Optimization of moderator materials by NSGA II based on macroscopic cross-sections: applications in accelerator neutron sources

适度 遗传算法 计算机科学 蒙特卡罗方法 中子 数学优化 最优化问题 算法 数学 核物理学 物理 机器学习 统计
作者
Yulin Ge,Yao Zhong,Nan Yuan,Yanbing Sun,Zhen Yang,Wei Ma,Liping Zou,Isao Murata,Liang Lu
出处
期刊:Journal of Instrumentation [Institute of Physics]
卷期号:18 (08): P08004-P08004 被引量:4
标识
DOI:10.1088/1748-0221/18/08/p08004
摘要

Abstract In recent years, genetic algorithms have been applied in nuclear technology design, which have been shown to produce optimized results more efficiently than traditional enumeration methods. This advancement in optimization techniques is particularly useful in the field of nuclear technology design, where complexity is high and decision-making time is critical. It can be used to optimize moderator materials for ANS to find composite materials that provide high neutron beam quality. At present, the direct combination of Monte Carlo method and genetic algorithm requires a lot of computing resources and time. And the weights of different optimization objectives are controversial. Thus, we propose a two-step method based on NSGA II, which uses macroscopic section as the intermediate parameters for optimization. It can greatly reduce the time of genetic algorithm optimization. The method is applied to the PAFA project of Sun Yat-sen University, the computational speed has been increased by 50 times based on a 50-generation optimization. And the results of the genetic algorithm show that the neutron beam obtained by using composite materials as moderator is 30.8% better than that obtained by using only MgF 2 as moderator. The two-step genetic algorithm optimization has shown its great potential in the optimization problem of moderator materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思琦吖发布了新的文献求助10
刚刚
1秒前
王巧巧完成签到,获得积分10
1秒前
安详的断缘完成签到,获得积分10
1秒前
Rank完成签到,获得积分10
2秒前
FashionBoy应助吴泽旭采纳,获得10
2秒前
3秒前
3秒前
阿媛呐完成签到,获得积分10
4秒前
怀仁发布了新的文献求助10
5秒前
5秒前
6秒前
无敌W完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
bitter完成签到,获得积分10
9秒前
CipherSage应助憨憨猫采纳,获得10
9秒前
个性梦曼完成签到,获得积分10
10秒前
万能图书馆应助张张采纳,获得10
10秒前
11秒前
12秒前
靖靖雯发布了新的文献求助30
12秒前
tenacity完成签到,获得积分10
12秒前
zhang狗子发布了新的文献求助10
13秒前
993494543发布了新的文献求助10
13秒前
东北饿霸完成签到,获得积分10
13秒前
14秒前
14秒前
小土豆完成签到 ,获得积分10
15秒前
啊啊啊完成签到,获得积分20
15秒前
万金油发布了新的文献求助10
15秒前
义气完成签到,获得积分10
16秒前
16秒前
16秒前
受伤翠容完成签到,获得积分20
16秒前
乐乐乐乐乐乐应助suicone采纳,获得10
17秒前
orixero应助安年采纳,获得10
17秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
请注意只有同济大学本校可以下载,求助同济大学博士学位论文,作者:王腾锐,导师:罗巍, 220
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831914
求助须知:如何正确求助?哪些是违规求助? 3374119
关于积分的说明 10483486
捐赠科研通 3094003
什么是DOI,文献DOI怎么找? 1703260
邀请新用户注册赠送积分活动 819333
科研通“疑难数据库(出版商)”最低求助积分说明 771423