Efficient and Privacy-Preserving Feature Importance-based Vertical Federated Learning

计算机科学 同态加密 差别隐私 特征选择 数据挖掘 特征(语言学) 联合学习 机器学习 信息隐私 加密 初始化 人工智能 随机梯度下降算法 人工神经网络 计算机网络 计算机安全 语言学 哲学 程序设计语言
作者
Anran Li,Jiahui Huang,Ju Jia,Hongyi Peng,Lan Zhang,Luu Anh Tuan,Han Yu,Xiang‐Yang Li
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-17 被引量:1
标识
DOI:10.1109/tmc.2023.3333879
摘要

Vertical Federated Learning (VFL) enables multiple data owners, each holding a different subset of features about a largely overlapping set of data samples, to collaboratively train a global model. The quality of data owners' local features affects the performance of the VFL model, which makes feature selection vitally important. However, existing feature selection methods for VFL either assume the availability of prior knowledge on the number of noisy features or prior knowledge on the post-training threshold of useful features to be selected, making them unsuitable for practical applications. To bridge this gap, we propose the Federated Stochastic Dual-Gate based Feature Selection (FedSDG-FS) approach. It consists of a Gaussian stochastic dual-gate to efficiently approximate the probability of a feature being selected. FedSDG-FS further designs a local embedding perturbation approach to achieve differential privacy for local training data. To reduce overhead, we propose a feature importance initialization method based on Gini impurity, which can accomplish its goals with only two parameter transmissions between the server and the clients. The enhanced version, FedSDG-FS++, protects the privacy for both the clients' training data and the server's labels through Partially Homomorphic Encryption (PHE) without relying on a trusted third-party. Theoretically, we analyze the convergence rate, privacy guarantees and security analysis of our methods. Extensive experiments on both synthetic and real-world datasets show that FedSDG-FS and FedSDG-FS++ significantly outperform existing approaches in terms of achieving more accurate selection of high-quality features as well as improving VFL performance in a privacy-preserving manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flames发布了新的文献求助10
1秒前
2秒前
YY完成签到 ,获得积分10
2秒前
迎迎崽完成签到,获得积分10
2秒前
万能图书馆应助东阳采纳,获得10
3秒前
云朵发布了新的文献求助10
4秒前
4秒前
科研通AI5应助dwls采纳,获得10
5秒前
mjr发布了新的文献求助10
6秒前
txxxx完成签到,获得积分10
7秒前
Lucas应助都是采纳,获得20
8秒前
9秒前
9秒前
10秒前
10秒前
Flames完成签到,获得积分10
12秒前
Jackcaosky发布了新的文献求助10
13秒前
Akim应助wang采纳,获得10
13秒前
加顿土豆发布了新的文献求助10
14秒前
张好好完成签到,获得积分10
16秒前
鲤鱼幼翠发布了新的文献求助10
16秒前
nozero应助温婉的篮球采纳,获得50
17秒前
18秒前
andrele发布了新的文献求助10
18秒前
自然的依丝完成签到,获得积分20
20秒前
22秒前
sdjtxdy完成签到,获得积分10
23秒前
日出发布了新的文献求助10
24秒前
25秒前
26秒前
abcdulla777发布了新的文献求助10
27秒前
29秒前
30秒前
材料小王子完成签到 ,获得积分10
31秒前
32秒前
ZHANG_Kun完成签到 ,获得积分10
34秒前
shelemi发布了新的文献求助10
34秒前
丢丢银完成签到,获得积分10
35秒前
科研助手6应助莉莉采纳,获得10
36秒前
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811233
求助须知:如何正确求助?哪些是违规求助? 3355613
关于积分的说明 10376950
捐赠科研通 3072462
什么是DOI,文献DOI怎么找? 1687519
邀请新用户注册赠送积分活动 811671
科研通“疑难数据库(出版商)”最低求助积分说明 766741