DeepMetricFi: Improving Wi-Fi Fingerprinting Localization by Deep Metric Learning

计算机科学 公制(单位) 人工智能 计算机网络 工程类 运营管理
作者
Pan Chen,Shuiping Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 6961-6971 被引量:6
标识
DOI:10.1109/jiot.2023.3315289
摘要

The Wi-Fi RSSI fingerprinting method is one of the mainstream indoor localization solutions for its reliable positioning accuracy and ubiquitous infrastructure. The basic assumption is the location distance of the indoor environment can be estimated by signal distance based on the radio propagation models. However, the estimation could fail for the influence of the indoor environment, such as the multipath effect. Although the recent methods utilize machine learning techniques to improve the representation of the signal distance, most of them ignore the spatial information of the indoor environment where fingerprints are collected. In this article, we propose a deep metric learning-based Wi-Fi RSSI fingerprinting localization method aiming to learn effective RSSI features under the constraints of the reference point (RP) local structure to ensure the consistency of the location and signal distances in the indoor environment. First, we compute the path distance between the RPs to construct the positive and negative pairs from the fingerprints as the input. Then we design the deep metric learning model and minimize the triple loss by stochastic gradient descent (SGD). Finally, we extract the features of the online RSSI and conduct the localization with the features of the radio map by the WKNN method. In the experiment, the method is evaluated in a real scene with various regions, which may bring the challenge for localization. The results prove our method achieves better performance compared with the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助蔚亭采纳,获得10
1秒前
LioXH完成签到,获得积分10
2秒前
内向苡完成签到,获得积分10
2秒前
凯卮完成签到,获得积分10
3秒前
晶晶完成签到,获得积分10
4秒前
4秒前
zzl1111发布了新的文献求助10
4秒前
jin完成签到,获得积分10
5秒前
所所应助小白采纳,获得10
5秒前
LioXH发布了新的文献求助10
6秒前
小可爱完成签到,获得积分10
8秒前
Toread完成签到 ,获得积分10
8秒前
8秒前
期待未来的自己应助eureka采纳,获得10
9秒前
HYQ完成签到,获得积分10
11秒前
里埃尔塞因斯完成签到 ,获得积分10
12秒前
13秒前
希望天下0贩的0应助zzl1111采纳,获得10
13秒前
16秒前
CodeCraft应助高木同学采纳,获得10
17秒前
高级后勤完成签到,获得积分10
17秒前
Auston_zhong应助lsy采纳,获得10
17秒前
故酒应助张可采纳,获得10
17秒前
喵喵完成签到,获得积分10
18秒前
贾小闲完成签到,获得积分10
18秒前
研友_n0kjPL完成签到,获得积分0
20秒前
咕咕完成签到,获得积分10
20秒前
静静子完成签到,获得积分10
20秒前
tzjz_zrz完成签到,获得积分10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
22秒前
TARGET完成签到 ,获得积分10
22秒前
温暖的鸿完成签到 ,获得积分10
23秒前
皇帝的床帘完成签到,获得积分10
23秒前
海的海完成签到 ,获得积分10
23秒前
饱满的小懒虫完成签到,获得积分10
24秒前
温柔的沉鱼完成签到,获得积分10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359450
关于积分的说明 10402612
捐赠科研通 3077262
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743