Collaborative Attention Guided Multi-Scale Feature Fusion Network for Medical Image Segmentation

计算机科学 特征(语言学) 人工智能 分割 比例(比率) 图像融合 图像分割 医学影像学 模式识别(心理学) 图像(数学) 计算机视觉 地理 哲学 语言学 地图学
作者
Zhenghua Xu,Biao Tian,Shijie Liu,Xiangtao Wang,Di Yuan,Junhua Gu,Junyang Chen,Thomas Lukasiewicz,Victor C. M. Leung
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 1857-1871 被引量:4
标识
DOI:10.1109/tnse.2023.3332810
摘要

Medical image segmentation is an important and complex task in clinical practices, but the widely used U-Net usually cannot achieve satisfactory performances in some clinical challenging cases. Therefore, some advanced variants of U-Net are proposed using multi-scale and attention mechanisms. Different from the existing works where multi-scale and attention are usually used independently, in this work, we integrate them together and propose a collaborative attention guided multi-scale feature fusion with enhanced convolution based U-Net (EC-CaM-UNet) model for more accurate medical image segmentation, where a novel collaborative attention guided multi-scale feature fusion (CoAG-MuSFu) module is proposed to highlight important (but small and unremarkable) multi-scale features and suppress irrelevant ones in model learning. Specifically, CoAG-MuSF uses a multi-dimensional collaborative attention (CoA) block to estimate the local and global self-attention, which is then deeply fused with the multi-scale feature maps generated by a multi-scale (MuS) block to better highlight the important multi-scale features and suppress the irrelevant ones. Furthermore, an additional supervision path and enhanced convolution blocks are used to enhance the deep model's feature learning ability in both deep and shallow features, respectively. Experimental results on three public medical image datasets show that EC-CaM-UNet greatly outperforms the state-of-the-art medical image segmentation baselines. The codes will be released after acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助天空的声音采纳,获得10
1秒前
1秒前
2秒前
3秒前
5秒前
5秒前
哈力发布了新的文献求助10
5秒前
6秒前
6秒前
JY'发布了新的文献求助10
7秒前
zm完成签到,获得积分10
7秒前
7秒前
在水一方应助Hang采纳,获得10
7秒前
7秒前
7秒前
9秒前
9秒前
勾勾1991发布了新的文献求助10
10秒前
yu发布了新的文献求助10
10秒前
CipherSage应助SnLXn采纳,获得10
10秒前
11秒前
11秒前
zm发布了新的文献求助18
12秒前
科研通AI5应助阿nice采纳,获得10
12秒前
完美世界应助风中冷风采纳,获得10
12秒前
充电宝应助奶油布丁采纳,获得10
12秒前
科研通AI5应助Schenb采纳,获得30
13秒前
13秒前
小雨发布了新的文献求助10
13秒前
jiaozhuzz发布了新的文献求助10
13秒前
白樱恋曲发布了新的文献求助10
14秒前
何帅帅发布了新的文献求助10
14秒前
14秒前
不想干活应助Q特别忠茶采纳,获得10
14秒前
14秒前
圆缺2333发布了新的文献求助10
15秒前
勾勾1991完成签到,获得积分10
15秒前
cc发布了新的文献求助10
16秒前
科研通AI5应助喵1采纳,获得30
16秒前
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4194617
求助须知:如何正确求助?哪些是违规求助? 3730307
关于积分的说明 11749255
捐赠科研通 3405398
什么是DOI,文献DOI怎么找? 1868386
邀请新用户注册赠送积分活动 924582
科研通“疑难数据库(出版商)”最低求助积分说明 835466