甲脒
钙钛矿(结构)
卤化物
铯
反应性(心理学)
材料科学
化学
无机化学
化学工程
有机化学
医学
工程类
病理
替代医学
作者
Vitantonio Valenzano,Andrea Cesari,Federica Balzano,Antonella Milella,Francesco Fracassi,Andrea Listorti,Giuseppe Gigli,Aurora Rizzo,Gloria Uccello‐Barretta,Silvia Colella
标识
DOI:10.1016/j.xcrp.2021.100432
摘要
Over the past 10 years, organometal halide perovskites have revolutionized the field of optoelectronics, particularly of emerging photovoltaic technologies. Today's best perovskite solar cells use triple-cation compositions containing a mixture of formamidinium, methylammonium, and cesium to enable more reproducible and stable device performance. The common procedure uses as-prepared precursor ink to avoid an undesirable decrease in device performance, attributed recently to a chemical reaction between methylammonium and formamidinium in solution. Here we employ nuclear magnetic resonance spectroscopy to explore different experimental conditions that can significantly modify these reaction kinetics; in particular, we find that the presence of cesium as the third cation can substantially slow down methylammonium-formamidinium reactivity. Our findings allow us to draw up a protocol for extended overtime perovskite ink stabilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI