A method for litchi picking points calculation in natural environment based on main fruit bearing branch detection

方位(导航) 点(几何) 人工智能 分割 集合(抽象数据类型) 机器人 计算机视觉 计算机科学 模式识别(心理学) 数学 几何学 程序设计语言
作者
Zhuo Zhong,Juntao Xiong,Juntao Xiong,Bolin Liu,Shisheng Liao,Zhaowei Huo,Zhengang Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:189: 106398-106398 被引量:22
标识
DOI:10.1016/j.compag.2021.106398
摘要

The accurate identification of picking points is the key to the intelligent operation of litchi picking robot. To pick fruit, the robot must detect the location of picking point at first. To locate the location of picking points more accurately, this paper proposes a method of locating picking points based on the detection of litchi’s main fruit bearing branch (MFBB). In the natural environment, the MFBB of litchi are similar to non-MFBB, so it is easy to get incorrect MFBB visual detection result that leads to the failure of robot picking. To identify litchi’s MFBB in the natural environment quickly and accurately, this paper proposed a litchi’s MFBB detection method based on the YOLACT. Firstly, litchi fruit and MFBB were connected as a litchi cluster label, and the data set of litchi cluster and MFBB was established, so the YOLACT model could learn the connection relationship between fruit and MFBB from the data set. Then, based on the detection result of litchi cluster and MFBB segmentation mask by this model, the pixel width difference between fruit and MFBB was used to segment the part of litchi cluster mask belonging to the MFBB, to obtain a more complete MFBB and improve the recall rate of MFBB. Finally, the middle point of the MFBB mask was taken as the picking point, and the angle of the MFBB was determined by skeleton extraction and the least square fitting method to provide a reference for robot picking posture. The experimental results showed that the precision of picking points calculated by this method was 89.7%, the F1 score was 83.8%, and the average running time of a single image was 0.154 s. Indicating that the proposed method has a good detection performance for the litchi picking points, and it can provide technical support for the visual recognition of the litchi picking robot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mavericks_Lee完成签到,获得积分10
刚刚
liang发布了新的文献求助30
刚刚
快乐梦松发布了新的文献求助10
1秒前
zzzhu完成签到,获得积分20
1秒前
孤独白拍完成签到 ,获得积分10
2秒前
阿俊1212发布了新的文献求助10
2秒前
iNk应助明眸意海采纳,获得20
3秒前
yy完成签到 ,获得积分10
4秒前
chennian发布了新的文献求助10
4秒前
5秒前
千a发布了新的文献求助10
6秒前
魁梧的小霸王完成签到,获得积分10
9秒前
暮渔木鱼发布了新的文献求助10
10秒前
千a完成签到,获得积分10
11秒前
卿年发布了新的文献求助10
13秒前
科研小帅完成签到,获得积分10
14秒前
14秒前
14秒前
图图完成签到 ,获得积分10
18秒前
19秒前
勿庸发布了新的文献求助30
19秒前
vffg完成签到,获得积分10
20秒前
21秒前
暮渔木鱼完成签到,获得积分20
21秒前
奋斗橘子应助倪妮采纳,获得10
22秒前
23秒前
coolkid应助多多采纳,获得20
23秒前
24秒前
25秒前
25秒前
鬼小妞nice完成签到 ,获得积分10
26秒前
仲夏发布了新的文献求助10
27秒前
好好发布了新的文献求助10
28秒前
拼搏的败发布了新的文献求助10
28秒前
28秒前
科研小裴完成签到 ,获得积分10
29秒前
galaxybalaaa完成签到,获得积分10
31秒前
Jello发布了新的文献求助10
31秒前
31秒前
顾矜应助美丽晓蓝采纳,获得10
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845327
求助须知:如何正确求助?哪些是违规求助? 3387454
关于积分的说明 10549673
捐赠科研通 3108196
什么是DOI,文献DOI怎么找? 1712473
邀请新用户注册赠送积分活动 824405
科研通“疑难数据库(出版商)”最低求助积分说明 774776