Label Consistent Flexible Matrix Factorization Hashing for Efficient Cross-modal Retrieval

散列函数 计算机科学 动态完美哈希 通用哈希 汉明空间 特征哈希 双重哈希 二进制代码 理论计算机科学 哈希表 局部敏感散列 判别式 模态(人机交互) 成对比较 模式识别(心理学) 人工智能 二进制数 算法 汉明码 数学 区块代码 解码方法 计算机安全 算术
作者
Donglin Zhang,Xiao‐Jun Wu,Jun Yu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:17 (3): 1-18 被引量:42
标识
DOI:10.1145/3446774
摘要

Hashing methods have sparked a great revolution on large-scale cross-media search due to its effectiveness and efficiency. Most existing approaches learn unified hash representation in a common Hamming space to represent all multimodal data. However, the unified hash codes may not characterize the cross-modal data discriminatively, because the data may vary greatly due to its different dimensionalities, physical properties, and statistical information. In addition, most existing supervised cross-modal algorithms preserve the similarity relationship by constructing an n × n pairwise similarity matrix, which requires a large amount of calculation and loses the category information. To mitigate these issues, a novel cross-media hashing approach is proposed in this article, dubbed label flexible matrix factorization hashing (LFMH). Specifically, LFMH jointly learns the modality-specific latent subspace with similar semantic by the flexible matrix factorization. In addition, LFMH guides the hash learning by utilizing the semantic labels directly instead of the large n × n pairwise similarity matrix. LFMH transforms the heterogeneous data into modality-specific latent semantic representation. Therefore, we can obtain the hash codes by quantifying the representations, and the learned hash codes are consistent with the supervised labels of multimodal data. Then, we can obtain the similar binary codes of the corresponding modality, and the binary codes can characterize such samples flexibly. Accordingly, the derived hash codes have more discriminative power for single-modal and cross-modal retrieval tasks. Extensive experiments on eight different databases demonstrate that our model outperforms some competitive approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责黑猫完成签到,获得积分10
1秒前
1秒前
yu发布了新的文献求助10
1秒前
3秒前
在水一方应助Zq采纳,获得10
3秒前
xiaoming发布了新的文献求助10
4秒前
桐桐应助等风的人采纳,获得10
4秒前
Leo完成签到,获得积分10
6秒前
6秒前
orixero应助chuxin采纳,获得10
10秒前
许可完成签到,获得积分10
11秒前
12秒前
黄义军发布了新的文献求助10
12秒前
14秒前
许可发布了新的文献求助30
15秒前
荷荷巴完成签到,获得积分10
16秒前
科研吴彦祖应助黄义军采纳,获得10
17秒前
17秒前
Zq发布了新的文献求助10
18秒前
领导范儿应助怡然的代玉采纳,获得10
19秒前
罗罗给罗罗的求助进行了留言
20秒前
20秒前
止戈为武完成签到,获得积分10
21秒前
ssss1003应助荷荷巴采纳,获得10
22秒前
22秒前
23秒前
24秒前
Wind完成签到,获得积分10
25秒前
25秒前
25秒前
清脆南蕾发布了新的文献求助10
26秒前
彭于晏应助风清扬采纳,获得10
28秒前
29秒前
zhang完成签到,获得积分20
29秒前
29秒前
kelexh发布了新的文献求助10
30秒前
vikoel完成签到,获得积分10
30秒前
11完成签到 ,获得积分10
31秒前
NexusExplorer应助霞霞采纳,获得10
31秒前
luoman5656完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930282
求助须知:如何正确求助?哪些是违规求助? 3475219
关于积分的说明 10985720
捐赠科研通 3205262
什么是DOI,文献DOI怎么找? 1771352
邀请新用户注册赠送积分活动 858902
科研通“疑难数据库(出版商)”最低求助积分说明 796873