Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem

强化学习 计算机科学 马尔可夫决策过程 数学优化 调度(生产过程) 人工智能 可扩展性 作业车间调度 地铁列车时刻表 背包问题 马尔可夫过程 算法 数学 统计 数据库 操作系统
作者
Luona Wei,Yuning Chen,Ming Chen,Yingwu Chen
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:110: 107607-107607 被引量:70
标识
DOI:10.1016/j.asoc.2021.107607
摘要

The agile earth observation satellite scheduling problem (AEOSSP) consists of selecting and scheduling a number of tasks from a set of user requests in order to optimize one or multiple criteria. In this paper, we consider a multi-objective version of AEOSSP (called MO-AEOSSP) where the failure rate and the timeliness of scheduled requests are optimized simultaneously. Due to its NP-hardness, traditional iterative problem-tailored heuristic methods are sensitive to problem instances and require massive computational overhead. We thus propose a deep reinforcement learning and parameter transfer based approach (RLPT) to tackle the MO-AEOSSP in a non-iterative manner. RLPT first decomposes the MO-AEOSSP into a number of scalarized sub-problems by a weight sum approach where each sub-problem can be formulated as a Markov Decision Process (MDP). RLPT then applies an encoder–decoder structure neural network (NN) trained by a deep reinforcement learning procedure to producing a high-quality schedule for each sub-problem. The resulting schedules of all scalarized sub-problems form an approximate pareto front for the MO-AEOSSP. Once a NN of a subproblem is trained, RLPT applies a parameter transfer strategy to reducing the training expenses for its neighboring sub-problems. Experimental results on a large set of randomly generated instances show that RLPT outperforms three classical multi-objective evolutionary algorithms (MOEAs) in terms of solution quality, solution distribution and computational efficiency. Results on various-size instances also show that RLPT is highly general and scalable. To the best of our knowledge, this study is the first attempt that applies deep reinforcement learning to a satellite scheduling problem considering multiple objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空勒完成签到,获得积分10
1秒前
ZD发布了新的文献求助10
2秒前
学术小白发布了新的文献求助10
2秒前
嘻嘻发布了新的文献求助10
2秒前
2秒前
Elite发布了新的文献求助30
2秒前
FashionBoy应助糖串串采纳,获得10
2秒前
3秒前
Yi发布了新的文献求助10
3秒前
3秒前
5秒前
砼砼完成签到,获得积分10
5秒前
6秒前
6秒前
CarryZ8发布了新的文献求助10
7秒前
小李完成签到,获得积分10
7秒前
元靖完成签到,获得积分10
7秒前
哈哈哈发布了新的文献求助10
7秒前
7秒前
醉陶然完成签到,获得积分10
7秒前
8秒前
8秒前
Jason2002完成签到 ,获得积分10
8秒前
于冰清关注了科研通微信公众号
10秒前
10秒前
June-ho发布了新的文献求助10
11秒前
11秒前
小李发布了新的文献求助10
11秒前
river_121完成签到,获得积分10
11秒前
12秒前
Heria完成签到,获得积分10
12秒前
Neo完成签到,获得积分20
12秒前
12秒前
春花秋月何时了关注了科研通微信公众号
12秒前
sunshine发布了新的文献求助10
12秒前
阿瓦达我觉得吧完成签到,获得积分10
12秒前
cdercder应助丽丽采纳,获得30
13秒前
传奇3应助落寞旭尧采纳,获得10
13秒前
cccjs发布了新的文献求助10
13秒前
sunsun10086完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480141
求助须知:如何正确求助?哪些是违规求助? 4581340
关于积分的说明 14380127
捐赠科研通 4509924
什么是DOI,文献DOI怎么找? 2471597
邀请新用户注册赠送积分活动 1457999
关于科研通互助平台的介绍 1431756