An effective classification framework for brain-computer interface system design based on combining of fNIRS and EEG signals

脑-机接口 加权 支持向量机 模式识别(心理学) 脑电图 计算机科学 线性判别分析 人工智能 分类器(UML) 运动表象 聚类分析 特征提取 语音识别 心理学 医学 精神科 放射科
作者
Adi Alhudhaif
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:7: e537-e537 被引量:18
标识
DOI:10.7717/peerj-cs.537
摘要

Background The brain-computer interface (BCI) is a relatively new but highly promising special field that is actively used in basic neuroscience. BCI includes interfaces for human-computer communication based directly on neural activity concerning mental processes. Fundamental BCI components consist of different units. In the first stage, the EEG and NIRS signals obtained from the individuals are preprocessed, and the signals are brought to a certain standard. Methods In order to realize proposed framework, a dataset containing Motor Imaginary and Mental Activity tasks are prepared with Electroencephalography (EEG) and Near-Infrared Spectroscopy (NIRS) signal. First of all, HbO and HbR curves are obtained from NIRS signals. Hbo, HbR, HbO+HbR, EEG, EEG+HbO and EEG+HbR features tables are created with the features obtained by using HbO, HbR, and EEG signals, and feature weighted is carried out with the k-Means clustering centers based attribute weighting method (KMCC-based) and the k-Means clustering centers difference based attribute weighting method (KMCCD-based). Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and k-Nearest Neighbors algorithm (kNN) classifiers are used to see the classifier differences in the study. Results As a result of this study, an accuracy rate of 99.7% (with kNN classifier and KMCCD-based weighting) is obtained in the data set of Motor Imaginary. Similarly, an accuracy rate of 99.9% (with SVM and kNN classifier and KMCCD-based weighting) is obtained in the Mental Activity dataset. The weighting method is used to increase the classification accuracy, and it has been shown that it will contribute to the classification of EEG and NIRS BCI systems. The results show that the proposed method increases classifiers’ performance, offering less processing power and ease of application. In the future, studies could be carried out by combining the k-Means clustering center-based weighted hybrid BCI method with deep learning architectures. Further improved classifier performances can be achieved by combining both systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
若水三千发布了新的文献求助10
刚刚
刚刚
刚刚
情怀应助shirelylee采纳,获得10
1秒前
努力科研发布了新的文献求助20
1秒前
sdl发布了新的文献求助10
1秒前
嵇之云发布了新的文献求助20
1秒前
momo发布了新的文献求助10
1秒前
Jasper应助hhh采纳,获得10
2秒前
小园饼干完成签到,获得积分10
2秒前
aizhujun完成签到,获得积分10
2秒前
2秒前
清秀的哈密瓜完成签到 ,获得积分10
3秒前
3秒前
Somniferum发布了新的文献求助10
3秒前
3秒前
WANGs发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
2105完成签到,获得积分10
5秒前
6秒前
nini完成签到,获得积分10
6秒前
要上岸发布了新的文献求助10
6秒前
Lasse应助阿鑫采纳,获得10
7秒前
7秒前
ztq417完成签到,获得积分10
7秒前
7秒前
阿斯巴甜完成签到,获得积分10
7秒前
8秒前
玿琤发布了新的文献求助10
8秒前
8秒前
彭于晏应助嵇之云采纳,获得10
8秒前
CikY发布了新的文献求助10
9秒前
若水三千完成签到,获得积分10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817975
求助须知:如何正确求助?哪些是违规求助? 3361163
关于积分的说明 10411894
捐赠科研通 3079381
什么是DOI,文献DOI怎么找? 1691165
邀请新用户注册赠送积分活动 814400
科研通“疑难数据库(出版商)”最低求助积分说明 768175