Tetromino pattern based accurate EEG emotion classification model

计算机科学 人工智能 模式识别(心理学) 判别式 支持向量机 脑电图 情绪分类 离散小波变换 分类器(UML) 特征选择 机器学习 语音识别 小波 小波变换 心理学 精神科
作者
Türker Tuncer,Şengül Doğan,Mehmet Bayğın,U. Rajendra Acharya
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:123: 102210-102210 被引量:38
标识
DOI:10.1016/j.artmed.2021.102210
摘要

Nowadays, emotion recognition using electroencephalogram (EEG) signals is becoming a hot research topic. The aim of this paper is to classify emotions of EEG signals using a novel game-based feature generation function with high accuracy. Hence, a multileveled handcrafted feature generation automated emotion classification model using EEG signals is presented. A novel textural features generation method inspired by the Tetris game called Tetromino is proposed in this work. The Tetris game is one of the famous games worldwide, which uses various characters in the game. First, the EEG signals are subjected to discrete wavelet transform (DWT) to create various decomposition levels. Then, novel features are generated from the decomposed DWT sub-bands using the Tetromino method. Next, the maximum relevance minimum redundancy (mRMR) features selection method is utilized to select the most discriminative features, and the selected features are classified using support vector machine classifier. Finally, each channel's results (validation predictions) are obtained, and the mode function-based voting method is used to obtain the general results. We have validated our developed model using three databases (DREAMER, GAMEEMO, and DEAP). We have attained 100% accuracies using DREAMER and GAMEEMO datasets. Furthermore, over 99% of classification accuracy is achieved for DEAP dataset. Thus, our developed emotion detection model has yielded the best classification accuracy rate compared to the state-of-the-art techniques and is ready to be tested for clinical application after validating with more diverse datasets. Our results show the success of the presented Tetromino pattern-based EEG signal classification model validated using three public emotional EEG datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuzekun完成签到,获得积分10
刚刚
科研通AI5应助调皮嫣娆采纳,获得10
1秒前
烟花应助tang采纳,获得10
1秒前
1秒前
满意尔芙发布了新的文献求助10
2秒前
鲲鹏完成签到 ,获得积分10
3秒前
3秒前
huangbaba11发布了新的文献求助10
3秒前
斯文败类应助ibigbird采纳,获得10
3秒前
卡卡东发布了新的文献求助10
4秒前
哈哈哈哈发布了新的文献求助30
5秒前
5秒前
laopei2001完成签到,获得积分10
5秒前
6秒前
6秒前
澪mio完成签到,获得积分20
8秒前
执着的凝琴完成签到,获得积分10
9秒前
HHHHHH发布了新的文献求助30
9秒前
viper3完成签到,获得积分10
10秒前
wzh发布了新的文献求助10
10秒前
小马甲应助缓慢千易采纳,获得10
11秒前
12秒前
13秒前
阳光飞槐发布了新的文献求助10
14秒前
15秒前
科研通AI5应助博修采纳,获得10
15秒前
17秒前
18秒前
科研通AI5应助zhaoyang采纳,获得10
18秒前
18秒前
Lucas应助大胆的马儿采纳,获得10
19秒前
19秒前
卓Celina完成签到,获得积分10
19秒前
ibigbird发布了新的文献求助10
20秒前
20秒前
20秒前
Kong发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803522
求助须知:如何正确求助?哪些是违规求助? 3348433
关于积分的说明 10338484
捐赠科研通 3064478
什么是DOI,文献DOI怎么找? 1682612
邀请新用户注册赠送积分活动 808364
科研通“疑难数据库(出版商)”最低求助积分说明 764038