Distributed Principal Subspace Analysis for Partitioned Big Data: Algorithms, Analysis, and Implementation

主成分分析 子空间拓扑 计算机科学 降维 算法 大数据 维数之咒 样品(材料) 校长(计算机安全) 数据挖掘 原始数据 人工智能
作者
Arpita Gang,Bingqing Xiang,Waheed U. Bajwa
出处
期刊:IEEE transactions on signal and information processing over networks [Institute of Electrical and Electronics Engineers]
卷期号:7: 699-715 被引量:1
标识
DOI:10.1109/tsipn.2021.3122297
摘要

Principal Subspace Analysis (PSA) -- and its sibling, Principal Component Analysis (PCA) -- is one of the most popular approaches for dimensionality reduction in signal processing and machine learning. But centralized PSA/PCA solutions are fast becoming irrelevant in the modern era of big data, in which the number of samples and/or the dimensionality of samples often exceed the storage and/or computational capabilities of individual machines. This has led to the study of distributed PSA/PCA solutions, in which the data are partitioned across multiple machines and an estimate of the principal subspace is obtained through collaboration among the machines. It is in this vein that this paper revisits the problem of distributed PSA/PCA under the general framework of an arbitrarily connected network of machines that lacks a central server. The main contributions of the paper in this regard are threefold. First, two algorithms are proposed in the paper that can be used for distributed PSA/PCA, with one in the case of data partitioned across samples and the other in the case of data partitioned across (raw) features. Second, in the case of sample-wise partitioned data, the proposed algorithm and a variant of it are analyzed, and their convergence to the true subspace at linear rates is established. Third, extensive experiments on both synthetic and real-world data are carried out to validate the usefulness of the proposed algorithms. In particular, in the case of sample-wise partitioned data, an MPI-based distributed implementation is carried out to study the interplay between network topology and communications cost as well as to study the effects of straggler machines on the proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高高代珊完成签到 ,获得积分10
3秒前
8R60d8应助感动的芝麻采纳,获得10
3秒前
飘逸善若完成签到,获得积分10
3秒前
共享精神应助孔半仙采纳,获得10
4秒前
姿姿发布了新的文献求助10
4秒前
共享精神应助Dasein采纳,获得50
9秒前
比奇堡艺术家完成签到,获得积分10
10秒前
小蘑菇应助姿姿采纳,获得10
11秒前
Xiaoxiao完成签到,获得积分0
11秒前
JamesPei应助钵钵鸡采纳,获得10
11秒前
zxx完成签到 ,获得积分10
12秒前
weiwei完成签到,获得积分10
13秒前
16秒前
汉堡包应助万雨斌采纳,获得10
17秒前
感动的小懒虫完成签到 ,获得积分20
22秒前
肖亚鑫发布了新的文献求助10
23秒前
孔半仙完成签到,获得积分20
23秒前
23秒前
fancy完成签到,获得积分10
23秒前
科研通AI5应助阿渺采纳,获得10
24秒前
去有风的地方完成签到 ,获得积分10
27秒前
Erica完成签到,获得积分10
28秒前
Rae完成签到,获得积分10
28秒前
SCS-SHOU完成签到,获得积分10
29秒前
不奇发布了新的文献求助10
30秒前
爱听歌的寄云完成签到,获得积分10
31秒前
33秒前
33秒前
33秒前
子乔完成签到,获得积分10
34秒前
科研通AI5应助ccer采纳,获得10
34秒前
36秒前
Hello应助LL采纳,获得10
36秒前
王琳完成签到,获得积分10
36秒前
科研通AI5应助肖亚鑫采纳,获得10
36秒前
邾佳完成签到 ,获得积分10
37秒前
37秒前
书生发布了新的文献求助10
38秒前
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838427
求助须知:如何正确求助?哪些是违规求助? 3380725
关于积分的说明 10515658
捐赠科研通 3100360
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821733
科研通“疑难数据库(出版商)”最低求助积分说明 772930