Deep learning with convolutional neural networks for EEG decoding and visualization

卷积神经网络 解码方法 计算机科学 可视化 人工智能 规范化(社会学) 模式识别(心理学) 脑电图 深度学习 心理学 机器学习 算法 人类学 精神科 社会学
作者
Robin Tibor Schirrmeister,Jost Tobias Springenberg,Lukas D. J. Fiederer,Martin Glasstetter,Katharina Eggensperger,Michael Tangermann,Frank Hutter,Wolfram Burgard,Tonio Ball
出处
期刊:Human Brain Mapping [Wiley]
卷期号:38 (11): 5391-5420 被引量:2457
标识
DOI:10.1002/hbm.23730
摘要

Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017 . © 2017 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zommen完成签到 ,获得积分10
刚刚
翟拂完成签到,获得积分10
刚刚
DLL完成签到 ,获得积分10
刚刚
wyp完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
2秒前
2秒前
kk发布了新的文献求助50
2秒前
在水一方应助IchenNG采纳,获得50
4秒前
小二郎应助贵贵采纳,获得10
6秒前
亦犹未进发布了新的文献求助10
7秒前
上官若男应助瓜瓜叽叽采纳,获得10
7秒前
8秒前
8秒前
Hans发布了新的文献求助10
8秒前
嘿嘿完成签到,获得积分10
9秒前
燕燕于飞发布了新的文献求助10
9秒前
CH发布了新的文献求助20
9秒前
晴天完成签到,获得积分10
9秒前
10秒前
11秒前
赵瑞完成签到,获得积分10
11秒前
hu完成签到,获得积分10
11秒前
mix完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
111完成签到,获得积分20
14秒前
寒冷的世界完成签到 ,获得积分10
14秒前
张亚慧发布了新的文献求助10
15秒前
liutengfei123发布了新的文献求助10
15秒前
15秒前
yuaner发布了新的文献求助10
16秒前
活泼可冥完成签到,获得积分20
17秒前
chili完成签到,获得积分10
17秒前
dongdong发布了新的文献求助10
17秒前
17秒前
风中的非笑完成签到,获得积分10
18秒前
18秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588