A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals

方位(导航) 小波 滚动轴承 振动 噪音(视频) 断层(地质) 信号(编程语言) 比例因子(宇宙学) 降噪 工程类 算法 小波变换 还原(数学) 声学 计算机科学 人工智能 控制理论(社会学) 数学 物理 暗能量 几何学 空间的度量展开 控制(管理) 程序设计语言 宇宙学 地震学 量子力学 地质学 图像(数学)
作者
Iman Soltani,Ming Liang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:22 (4): 915-933 被引量:122
标识
DOI:10.1016/j.ymssp.2007.10.006
摘要

The vibration signal measured from a bearing contains vital information for the prognostic and health assessment purposes. However, when bearings are installed as part of a complex mechanical system, the measured signal is often heavily clouded by various noises due to the compounded effect of interferences of other machine elements and background noises present in the measuring device. As such, reliable condition monitoring would not be possible without proper de-noising. This is particularly true for incipient bearing faults with very weak signature signals. A new de-noising scheme is proposed in this paper to enhance the vibration signals acquired from faulty bearings. This de-noising scheme features a spectral subtraction to trim down the in-band noise prior to wavelet filtering. The Gabor wavelet is used in the wavelet transform and its parameters, i.e., scale and shape factor are selected in separate steps. The proper scale is found based on a novel resonance estimation algorithm. This algorithm makes use of the information derived from the variable shaft rotational speed though such variation is highly undesirable in fault detection since it complicates the process substantially. The shape factor value is then selected by minimizing a smoothness index. This index is defined as the ratio of the geometric mean to the arithmetic mean of the wavelet coefficient moduli. De-noising results are presented for simulated signals and experimental data acquired from both normal and faulty bearings with defective outer race, inner race, and rolling element.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyl发布了新的文献求助10
1秒前
1秒前
ky小白白完成签到 ,获得积分10
3秒前
BK发布了新的文献求助10
4秒前
6秒前
7秒前
Vegetable_Dog发布了新的文献求助10
8秒前
松19发布了新的文献求助10
8秒前
汉堡包应助hyl采纳,获得10
9秒前
Wangyingjie5完成签到,获得积分10
9秒前
兴奋姒完成签到,获得积分20
9秒前
zhang发布了新的文献求助10
11秒前
西西发布了新的文献求助10
11秒前
shuang完成签到 ,获得积分10
13秒前
14秒前
大力的飞莲完成签到,获得积分10
16秒前
半醒发布了新的文献求助10
18秒前
科研通AI2S应助嗬嗬采纳,获得10
18秒前
常涑完成签到,获得积分10
18秒前
18秒前
zhang完成签到,获得积分10
20秒前
clock完成签到 ,获得积分10
20秒前
常泽洋122发布了新的文献求助40
21秒前
21秒前
22秒前
西西完成签到,获得积分20
22秒前
骄傲的硬币完成签到,获得积分10
23秒前
24秒前
安静发布了新的文献求助10
25秒前
ddxxtt完成签到,获得积分10
25秒前
27秒前
英勇大神发布了新的文献求助10
27秒前
gougoudy完成签到,获得积分10
27秒前
大雯子完成签到,获得积分10
29秒前
孙燕应助fanger采纳,获得10
29秒前
欢呼的以蓝完成签到,获得积分10
29秒前
杨仔1227发布了新的文献求助10
29秒前
Hello应助半醒采纳,获得10
31秒前
32秒前
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845142
求助须知:如何正确求助?哪些是违规求助? 3387280
关于积分的说明 10548665
捐赠科研通 3108036
什么是DOI,文献DOI怎么找? 1712359
邀请新用户注册赠送积分活动 824374
科研通“疑难数据库(出版商)”最低求助积分说明 774739