Application of adaptive grid-based multi-objective particle swarm optimization algorithm for directional drilling trajectory design

粒子群优化 数学优化 多群优化 弹道 计算机科学 多目标优化 网格 无导数优化 全局优化 轨迹优化 帕累托原理 数学 最优控制 天文 几何学 物理
作者
Bihai Chen,Xingyue Liu,Haojie Liu,Siyi Cheng,Gongjian Wen
标识
DOI:10.1016/j.geoen.2023.211431
摘要

The parameters optimization is the key issue for directional drilling trajectory design in oil and gas fields development, and there are three main challenges in multi-objective and multi-constraint optimization: (1) how to establish a multi-objective optimization model based on geological constraints; (2) how to design an appropriate optimization algorithm and solve the optimization model effectively; (3) how to select the desired result from the obtained Pareto solution and meet the engineering requirements. To build a safe and cost-efficient directional drilling trajectory, a new multi-objective optimization model is established in this paper. The effective objective functions to evaluate the drilling trajectory are summarized as the minimum trajectory length, torque, and strain energy. Moreover, the new model takes the wellbore stability based on Mohr–Coulomb criterion as constraint to prevent the borehole from collapsing. A novel adaptive grid-based multi-objective particle swarm optimization(AGMOPSO) is presented to achieve a set of Pareto optimal solutions of the established optimization model. In this algorithm, a new particle flight mode based on arcsine function of inertia weight and Gaussian mutation strategy are introduced to further improve the global searching ability and obtain more non-inferior solutions. To ensure the uniformity of non-inferior solutions, the adaptive grid based on density control factor is designed to map the space of objective functions to the grid space and adaptively adjust the density of non-inferior solutions in the external archive. Besides, a linear weighted summation function is developed to realize leader selection and archive maintenance of non-inferior solutions. The optimization results on the Pareto front indicate that AGMOPSO has better convergence and uniformity than the unmodified algorithm and reported results. To be concluded, AGMOPSO achieves a better optimization performance and obtain a better trajectory for drilling trajectory optimization model with geological constraints, which has good practical and theoretical significance for directional drilling trajectory optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
刚刚
Rain完成签到,获得积分10
4秒前
安静的芝麻完成签到,获得积分10
6秒前
Lauren完成签到 ,获得积分10
7秒前
时代更迭完成签到 ,获得积分10
9秒前
满意的念柏完成签到,获得积分10
10秒前
科研通AI5应助小豆包采纳,获得10
13秒前
cwj完成签到 ,获得积分10
14秒前
稳重的秋天完成签到,获得积分10
16秒前
18秒前
狼来了aas完成签到,获得积分10
19秒前
韦老虎发布了新的文献求助10
21秒前
22秒前
Improve完成签到,获得积分10
24秒前
五月完成签到 ,获得积分10
26秒前
不如看海完成签到 ,获得积分10
26秒前
兔BF完成签到,获得积分10
26秒前
tszjw168发布了新的文献求助10
26秒前
fei完成签到 ,获得积分10
27秒前
塔塔饼完成签到,获得积分10
27秒前
KK完成签到 ,获得积分10
28秒前
32秒前
qiaoxi完成签到,获得积分10
33秒前
任性的思远完成签到 ,获得积分10
33秒前
小燕子完成签到 ,获得积分10
34秒前
34秒前
林志伟完成签到 ,获得积分10
35秒前
七月星河完成签到 ,获得积分10
37秒前
Jason完成签到 ,获得积分10
37秒前
sam发布了新的文献求助30
38秒前
瘦瘦的迎南完成签到 ,获得积分10
38秒前
欧皇发布了新的文献求助10
39秒前
羅马完成签到 ,获得积分10
41秒前
fomo完成签到,获得积分10
42秒前
路路完成签到 ,获得积分10
43秒前
研友_GZ3zRn完成签到 ,获得积分0
45秒前
欧皇发布了新的文献求助10
48秒前
搬砖的化学男完成签到 ,获得积分0
49秒前
Hey发布了新的文献求助10
53秒前
CWC完成签到,获得积分10
57秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811753
求助须知:如何正确求助?哪些是违规求助? 3356021
关于积分的说明 10379166
捐赠科研通 3072972
什么是DOI,文献DOI怎么找? 1688168
邀请新用户注册赠送积分活动 811860
科研通“疑难数据库(出版商)”最低求助积分说明 766893