Application of adaptive grid-based multi-objective particle swarm optimization algorithm for directional drilling trajectory design

粒子群优化 数学优化 多群优化 弹道 计算机科学 多目标优化 网格 无导数优化 全局优化 轨迹优化 帕累托原理 控制理论(社会学) 数学 最优控制 控制(管理) 物理 人工智能 天文 几何学
作者
Bihai Chen,Guojun Wen,Xin He,Xingyue Liu,Haojie Liu,Siyi Cheng
标识
DOI:10.1016/j.geoen.2023.211431
摘要

The parameters optimization is the key issue for directional drilling trajectory design in oil and gas fields development, and there are three main challenges in multi-objective and multi-constraint optimization: (1) how to establish a multi-objective optimization model based on geological constraints; (2) how to design an appropriate optimization algorithm and solve the optimization model effectively; (3) how to select the desired result from the obtained Pareto solution and meet the engineering requirements. To build a safe and cost-efficient directional drilling trajectory, a new multi-objective optimization model is established in this paper. The effective objective functions to evaluate the drilling trajectory are summarized as the minimum trajectory length, torque, and strain energy. Moreover, the new model takes the wellbore stability based on Mohr–Coulomb criterion as constraint to prevent the borehole from collapsing. A novel adaptive grid-based multi-objective particle swarm optimization(AGMOPSO) is presented to achieve a set of Pareto optimal solutions of the established optimization model. In this algorithm, a new particle flight mode based on arcsine function of inertia weight and Gaussian mutation strategy are introduced to further improve the global searching ability and obtain more non-inferior solutions. To ensure the uniformity of non-inferior solutions, the adaptive grid based on density control factor is designed to map the space of objective functions to the grid space and adaptively adjust the density of non-inferior solutions in the external archive. Besides, a linear weighted summation function is developed to realize leader selection and archive maintenance of non-inferior solutions. The optimization results on the Pareto front indicate that AGMOPSO has better convergence and uniformity than the unmodified algorithm and reported results. To be concluded, AGMOPSO achieves a better optimization performance and obtain a better trajectory for drilling trajectory optimization model with geological constraints, which has good practical and theoretical significance for directional drilling trajectory optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yinhuan关注了科研通微信公众号
1秒前
斯文败类应助qiqi1111采纳,获得10
2秒前
cchh发布了新的文献求助10
2秒前
迷路代玉发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
ww发布了新的文献求助10
5秒前
FoxLY完成签到,获得积分10
5秒前
女王完成签到 ,获得积分10
6秒前
loki发布了新的文献求助10
8秒前
脑洞疼应助czb666采纳,获得10
9秒前
小明应助zjy采纳,获得20
10秒前
zhou发布了新的文献求助20
10秒前
是多多呀完成签到 ,获得积分10
12秒前
碧蓝的以云完成签到,获得积分10
13秒前
14秒前
HPP123完成签到 ,获得积分10
14秒前
15秒前
缓慢晟睿完成签到,获得积分10
15秒前
yinhuan发布了新的文献求助10
17秒前
浮游应助ww采纳,获得10
17秒前
昏睡的铭发布了新的文献求助30
18秒前
18秒前
震动的牛排完成签到,获得积分10
18秒前
狂野吐司完成签到 ,获得积分10
19秒前
一针超人发布了新的文献求助10
20秒前
传奇3应助DD采纳,获得10
21秒前
李爱国应助糖糖唐采纳,获得50
22秒前
czb666发布了新的文献求助10
23秒前
高兴孤萍发布了新的文献求助10
24秒前
24秒前
15357058526发布了新的文献求助10
24秒前
脑洞疼应助liuzengzhang666采纳,获得10
25秒前
tree完成签到,获得积分10
25秒前
孟冬完成签到,获得积分20
26秒前
汪旺完成签到 ,获得积分10
26秒前
小蘑菇应助phyzb采纳,获得10
26秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312188
求助须知:如何正确求助?哪些是违规求助? 4455976
关于积分的说明 13864983
捐赠科研通 4344392
什么是DOI,文献DOI怎么找? 2385837
邀请新用户注册赠送积分活动 1380209
关于科研通互助平台的介绍 1348565