Integrating machine learning, docking analysis, molecular dynamics, and experimental validation for accelerated discovery of novel FLT3 inhibitors against AML

化学 对接(动物) 计算生物学 生物 护理部 医学
作者
Yihuan Zhao,Qiang Huang,Qiang Liu,Zhonghua Shi,Fushan Tang
出处
期刊:Arabian Journal of Chemistry [Elsevier]
卷期号:18: 2202024-2202024 被引量:1
标识
DOI:10.25259/ajc_220_2024
摘要

Acute myeloid leukemia (AML) is a malignant clonal disorder driven by the excessive proliferation of immature myeloid cells in the bone marrow and blood, often linked to Fms-like tyrosine kinase 3 ( FLT3 ) mutations, which occur in about one-third of AML patients. While FLT3 inhibitors such as midostaurin, quizartinib, and gilteritinib have demonstrated clinical efficacy, their therapeutic potential is often limited by drug resistance and adverse reactions. Therefore, the development of novel FLT3 inhibitors is critical for improving AML treatment outcomes. In this study, we employed a multi-faceted computer-aided drug design (CADD) approach, integrating machine learning (ML), molecular docking, and molecular dynamics simulations, to accelerate the discovery of new FLT3 inhibitors. A ML-based FLT3 classification model achieved an accuracy of 0.958, while an MV4-11 cell activity prediction model demonstrated strong predictive performance with an R 2 of 0.846, MAE of 0.368, and RMSE of 0.492. Virtual screening of 7,280 compounds from the ChemDiv database led to the identification of 68 potential FLT3 inhibitors, with molecular dynamics simulations confirming their stable binding to the FLT3 protein. Experimental validation of four selected compounds showed promising activity in MV4-11 cellular assays, demonstrating the reliability of this integrated CADD approach. These results underscore the potential of a CADD-driven approach, enhanced by ML, to rapidly design new FLT3 inhibitors for AML treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HZH完成签到,获得积分10
刚刚
1秒前
Jani完成签到,获得积分10
1秒前
小马甲应助hym4531采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
仁爱金毛完成签到,获得积分10
2秒前
体贴冰之完成签到,获得积分20
2秒前
充电宝应助皮崇知采纳,获得10
3秒前
3秒前
Nico发布了新的文献求助10
4秒前
SciGPT应助努力的学采纳,获得10
4秒前
情怀应助拾诣采纳,获得10
4秒前
玄xuan发布了新的文献求助10
4秒前
DJH完成签到,获得积分10
4秒前
4秒前
sunny发布了新的文献求助10
4秒前
zhengliumd发布了新的文献求助10
5秒前
大土豆发布了新的文献求助10
5秒前
5秒前
充电宝应助hu采纳,获得10
5秒前
Una发布了新的文献求助10
5秒前
瑶瑶啊发布了新的文献求助10
6秒前
王旭阳发布了新的文献求助10
6秒前
DavidXu发布了新的文献求助10
6秒前
善学以致用应助子车半烟采纳,获得10
6秒前
无辜叫兽发布了新的文献求助10
7秒前
酷炫翠完成签到,获得积分10
7秒前
魔幻筮完成签到,获得积分10
7秒前
陈敏娇发布了新的文献求助10
7秒前
8秒前
makabaka发布了新的文献求助10
8秒前
8秒前
酷波er应助美好斓采纳,获得10
8秒前
皮崇知完成签到,获得积分10
8秒前
ll发布了新的文献求助10
8秒前
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614534
求助须知:如何正确求助?哪些是违规求助? 4699484
关于积分的说明 14903520
捐赠科研通 4739530
什么是DOI,文献DOI怎么找? 2547633
邀请新用户注册赠送积分活动 1511464
关于科研通互助平台的介绍 1473677