Machine Learning–Based Selection of Resection vs Transplant and Survival in Hepatocellular Carcinoma

肝细胞癌 切除术 选择(遗传算法) 医学 人工智能 内科学 肿瘤科 外科 计算机科学
作者
Hyun Uk Kim,Ji Won Han,Pil Soo Sung,Jeong Won Jang,Seung Kew Yoon,Ho Joong Choi,Young Kyoung You
出处
期刊:JAMA network open [American Medical Association]
卷期号:8 (9): e2532353-e2532353
标识
DOI:10.1001/jamanetworkopen.2025.32353
摘要

Liver transplantation (LT) generally provides superior long-term survival compared with surgical resection (SR) for hepatocellular carcinoma (HCC), but optimal treatment selection remains challenging due to donor scarcity and patient heterogeneity. To develop and validate a machine learning (ML)-based decision-support model to estimate optimized individualized treatment selection between LT and SR in HCC. This nationwide cohort study included patients with HCC who underwent either LT or SR between 2008 and 2018 from the Korea Central Cancer Registry as the derivation cohort. An independent cohort of patients with HCC treated between 2009 and 2020 at Seoul St Mary's Hospital was used for external validation. Data were analyzed from February to March 2025. Curative treatment with LT or SR for HCC. Separate ML models estimating 3-year overall survival (OS) were developed for LT and SR. Patients were stratified into high- and low-risk groups for each treatment, identifying LT-favorable and LT-nonfavorable groups. Counterfactual analysis evaluated OS differences between ML-guided and clinical practice treatments. A total of 3915 patients (3137 [80.1%] male), 296 in the LT group (median [IQR] age, 54.0 [49.0-60.0] years) and 3619 in the SR group (median [IQR] age, 58.0 [51.0-66.0] years), were included in the derivation cohort, and 614 patients (497 [80.9%] male)-314 in the LT group (median [IQR] age, 55.0 [51.0-60.0] years) and 300 in the SR group (median [IQR] age, 59.0 [52.0-66.0] years)-were included in the external validation cohort. Across both cohorts, LT recipients were generally younger and had more advanced liver disease, with higher rates of cirrhosis (78 [26.4%] vs 699 [19.3%]; P = .005), hepatic encephalopathy (20 [6.8%] vs 10 [0.3%]; P < .001), and ascites (50 [19.9%] vs 153 [4.2%]; P < .001). LT recipients also exhibited poorer liver function, with lower albumin levels (median [IQR], 3.4 [2.8-4.0] vs 4.2 [3.9-4.5] g/dL), higher bilirubin levels (median [IQR], 1.4 [0.9-2.5] vs 0.7 [0.5-1.0] mg/dL), and prolonged international normalized ratios (median [IQR], 1.2 [1.1-1.5] vs 1.1 [1.0-1.1]), and had smaller tumors (median [IQR], 2.3 [1.5-3.6] vs 3.2 [2.2-5.0] cm; P < .001) but more tumors (mean [SD], 1.6 [1.0] vs 1.2 [0.7]; P < .001). The support vector machine model achieved the highest area under the receiver operating characteristic curve (AUROC) of 0.82 (95% CI, 0.78-0.86) in the LT cohort, whereas CatBoost performed best in the SR cohort (AUROC, 0.79 [95% CI, 0.78-0.80]). Counterfactual analysis estimated that ML-guided treatment decisions could improve survival compared with observed clinical practice decisions (HR, 0.46 [95% CI, 0.42-0.50]; P < .001). These findings were consistent in the independent cohort. Findings from this cohort study of patients with HCC indicated that an ML-based decision-support model estimated accurate risk stratification and identified the potential for improved survival through individualized, model-guided treatment selection. These findings suggest clinical utility in supplementing existing guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
答题不卡发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
2秒前
ddd完成签到,获得积分20
2秒前
王伟发布了新的文献求助30
3秒前
乌拉拉完成签到,获得积分10
3秒前
3秒前
忧郁的沁完成签到,获得积分10
3秒前
zoey完成签到,获得积分10
3秒前
轩辕冰夏发布了新的文献求助10
4秒前
5秒前
ev-nano完成签到,获得积分10
5秒前
6秒前
dgdsnfds发布了新的文献求助10
6秒前
年轻上线发布了新的文献求助10
6秒前
7秒前
科研通AI6应助花痴的酒窝采纳,获得10
7秒前
lmgj发布了新的文献求助10
8秒前
科研通AI2S应助李雨欣采纳,获得10
8秒前
慕青应助薛定谔的猫采纳,获得10
10秒前
erbdguj发布了新的文献求助10
11秒前
杜小宝完成签到,获得积分10
11秒前
NexusExplorer应助盛欢采纳,获得10
12秒前
dfg关闭了dfg文献求助
13秒前
轩辕冰夏完成签到,获得积分10
13秒前
13秒前
年轻上线完成签到,获得积分10
14秒前
莫元枫发布了新的文献求助10
14秒前
Jasper应助agou采纳,获得10
14秒前
14秒前
斯文败类应助好好采纳,获得10
14秒前
15秒前
15秒前
玉米粥完成签到,获得积分10
16秒前
勤奋以蓝发布了新的文献求助10
16秒前
drfwjuikesv完成签到,获得积分10
17秒前
整齐的白筠完成签到 ,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321239
求助须知:如何正确求助?哪些是违规求助? 4463064
关于积分的说明 13888665
捐赠科研通 4354148
什么是DOI,文献DOI怎么找? 2391585
邀请新用户注册赠送积分活动 1385183
关于科研通互助平台的介绍 1354924