High-Sensitivity Carbon Nanofibers/Graphene/Polydimethylsiloxane Flexible Pressure Sensor Based on a Hierarchical Structure with Enhanced Sensing Range

聚二甲基硅氧烷 石墨烯 材料科学 纳米技术 灵敏度(控制系统) 压力传感器 计算机科学 光电子学 电子工程 工程类 机械工程
作者
Jie Chang,Yu Dong,Jin Zhao,Xin Hou,Xubo Yuan
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:6 (4): 2323-2335 被引量:4
标识
DOI:10.1021/acsaelm.3c01854
摘要

Achieving a high sensitivity of sensors over a wide linear range is crucial for practical applications. Introducing various micronano topologies is the most effective approach to enhance sensor sensitivity. Unfortunately, due to the size effect, the surface structure is prone to deformation and saturation under pressure, limiting sensitivity to a narrow range and hindering broader applications. Additionally, few of the recently developed sensors with wide sensing ranges have been able to achieve the high sensitivity levels provided by micronano topological structures. The achievement of an effective trade-off between high sensitivity and a wide sensing range still presents significant challenges. In this study, a versatile strategy is proposed to design a high-sensitivity flexible pressure sensor with an improved sensing range. A cost-effective and adjustable wire mesh is utilized to introduce microstructures while constructing a hierarchically reinforced structure, effectively combining porous and surface microstructures. Hybrid carbon nanofibers and graphene serve as conductive materials to further enhance the performance. The sensor demonstrates a high sensitivity of −1.12 kPa–1 and extends the sensing range to nearly 3.9 times (0–853 Pa) compared to sensors with only microstructures (0–220 Pa). Moreover, it exhibits a response speed comparable to that of the human body (26 and 33 ms) and a high durability (4000 cycles). The sensor showcases excellent signal response to high-pressure movements (finger bending and wrist bending) and low-pressure breathing movements, holding promising potential for motion monitoring and information encryption applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
科研小虫应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
渤大小mn发布了新的文献求助10
2秒前
ste56完成签到,获得积分10
2秒前
zhy发布了新的文献求助10
2秒前
Hello应助破晓星采纳,获得10
2秒前
lijingwen发布了新的文献求助10
3秒前
Lollipopzz完成签到 ,获得积分10
4秒前
anz完成签到 ,获得积分10
4秒前
wshwx发布了新的文献求助50
4秒前
Arrebol完成签到,获得积分10
4秒前
天天快乐应助棋棋233采纳,获得10
6秒前
科研通AI6应助SS采纳,获得10
7秒前
YUMMY发布了新的文献求助10
11秒前
zcl给量子星尘的求助进行了留言
12秒前
12秒前
14秒前
棋棋233完成签到,获得积分10
15秒前
凡仔完成签到,获得积分10
17秒前
lijingwen完成签到,获得积分10
17秒前
18秒前
18秒前
Owen应助JS采纳,获得10
18秒前
18秒前
赘婿应助忆年慧逝采纳,获得10
19秒前
20秒前
Zehn发布了新的文献求助10
20秒前
情怀应助风轻采纳,获得10
21秒前
21秒前
zzzy发布了新的文献求助10
21秒前
白许四十完成签到,获得积分10
21秒前
22秒前
退而求其次完成签到,获得积分10
22秒前
22秒前
22秒前
栗子发布了新的文献求助20
22秒前
Tian0118发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287819
求助须知:如何正确求助?哪些是违规求助? 4439834
关于积分的说明 13823167
捐赠科研通 4322057
什么是DOI,文献DOI怎么找? 2372274
邀请新用户注册赠送积分活动 1367845
关于科研通互助平台的介绍 1331344