Machine Learning Analysis Using RNA Sequencing to Distinguish Neuromyelitis Optica from Multiple Sclerosis and Identify Therapeutic Candidates

视神经脊髓炎 多发性硬化 计算生物学 核糖核酸 医学 生物 免疫学 遗传学 基因
作者
Lukasz S. Wylezinski,Cheryl L. Sesler,Guzel Shaginurova,Elena Grigorenko,Jay G. Wohlgemuth,Franklin R. Cockerill,Michael K. Racke,Charles F. Spurlock
出处
期刊:The Journal of Molecular Diagnostics [Elsevier BV]
卷期号:26 (6): 520-529 被引量:1
标识
DOI:10.1016/j.jmoldx.2024.03.003
摘要

This study aims to identify RNA biomarkers distinguishing neuromyelitis optica (NMO) from relapsing-remitting multiple sclerosis (RRMS) and explore potential therapeutic applications leveraging machine learning (ML). An ensemble approach was developed using differential gene expression analysis and competitive ML methods, interrogating total RNA-sequencing data sets from peripheral whole blood of treatment-naïve patients with RRMS and NMO and healthy individuals. Pathway analysis of candidate biomarkers informed the biological context of disease, transcription factor activity, and small-molecule therapeutic potential. ML models differentiated between patients with NMO and RRMS, with the performance of certain models exceeding 90% accuracy. RNA biomarkers driving model performance were associated with ribosomal dysfunction and viral infection. Regulatory networks of kinases and transcription factors identified biological associations and identified potential therapeutic targets. Small-molecule candidates capable of reversing perturbed gene expression were uncovered. Mitoxantrone and vorinostat-two identified small molecules with previously reported use in patients with NMO and experimental autoimmune encephalomyelitis-reinforced discovered expression signatures and highlighted the potential to identify new therapeutic candidates. Putative RNA biomarkers were identified that accurately distinguish NMO from RRMS and healthy individuals. The application of multivariate approaches in analysis of RNA-sequencing data further enhances the discovery of unique RNA biomarkers, accelerating the development of new methods for disease detection, monitoring, and therapeutics. Integrating biological understanding further enhances detection of disease-specific signatures and possible therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助小周采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
fang发布了新的文献求助10
4秒前
6秒前
CipherSage应助李昕123采纳,获得10
6秒前
兴奋芷完成签到,获得积分10
7秒前
8秒前
9秒前
东黎完成签到 ,获得积分10
10秒前
lcl发布了新的文献求助10
11秒前
11秒前
12秒前
yzn完成签到,获得积分10
12秒前
水门完成签到,获得积分10
13秒前
称心寒松发布了新的文献求助10
14秒前
zjh发布了新的文献求助10
15秒前
水门发布了新的文献求助10
16秒前
左友铭完成签到 ,获得积分10
16秒前
17秒前
Yue发布了新的文献求助10
17秒前
爆米花应助中中会发光采纳,获得10
18秒前
19秒前
浑灵安完成签到 ,获得积分10
19秒前
19秒前
20秒前
Danny完成签到,获得积分10
20秒前
21秒前
义气凛发布了新的文献求助10
22秒前
cq220完成签到 ,获得积分10
22秒前
一颗橙子发布了新的文献求助10
22秒前
DDD发布了新的文献求助10
23秒前
zjh完成签到,获得积分20
23秒前
24秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781157
求助须知:如何正确求助?哪些是违规求助? 3326652
关于积分的说明 10227891
捐赠科研通 3041760
什么是DOI,文献DOI怎么找? 1669590
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751