An Improved YOLOv5 Method to Detect Tailings Ponds from High-Resolution Remote Sensing Images

尾矿 遥感 计算机科学 高分辨率 环境科学 尾矿坝 地质学 冶金 材料科学
作者
Zhenhui Sun,Peihang Li,Qingyan Meng,Yunxiao Sun,Yaxin Bi
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (7): 1796-1796 被引量:18
标识
DOI:10.3390/rs15071796
摘要

Tailings ponds’ failure and environmental pollution make tailings monitoring very important. Remote sensing technology can quickly and widely obtain ground information and has become one of the important means of tailings monitoring. However, the efficiency and accuracy of traditional remote sensing monitoring technology have difficulty meeting the management needs. At the same time, affected by factors such as the geographical environment and imaging conditions, tailings have various manifestations in remote sensing images, which all bring challenges to the accurate acquisition of tailings information in large areas. By improving You Only Look Once (YOLO) v5s, this study designs a deep learning-based framework for the large-scale extraction of tailings ponds information from the entire high-resolution remote sensing images. For the improved YOLOv5s, the Swin Transformer is integrated to build the Swin-T backbone, the Fusion Block of efficient Reparameterized Generalized Feature Pyramid Network (RepGFPN) in DAMO-YOLO is introduced to form the RepGFPN Neck, and the head is replaced with Decoupled Head. In addition, sample boosting strategy (SBS) and global non-maximum suppression (GNMS) are designed to improve the sample quality and suppress repeated detection frames in the entire image, respectively. The model test results based on entire Gaofen-6 (GF-6) high-resolution remote sensing images show that the F1 score of tailings ponds is significantly improved by 12.22% compared with YOLOv5, reaching 81.90%. On the basis of both employing SBS, the improved YOLOv5s boots the mAP@0.5 of YOLOv5s by 5.95%, reaching 92.15%. This study provides a solution for tailings ponds’ monitoring and ecological environment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEAUBOOK应助刘丰采纳,获得10
1秒前
3秒前
4秒前
5秒前
6秒前
冯尔蓝完成签到,获得积分10
7秒前
8秒前
羊踯躅发布了新的文献求助10
8秒前
优雅柏柳发布了新的文献求助10
9秒前
共享精神应助QinQin采纳,获得10
10秒前
刘洋发布了新的文献求助10
13秒前
深情安青应助文章多多采纳,获得10
14秒前
15秒前
科研通AI5应助大喜子采纳,获得10
15秒前
顾矜应助林旭采纳,获得10
17秒前
幽默的谷梦完成签到,获得积分10
18秒前
JamesPei应助细腻的沂采纳,获得10
19秒前
轻松的芯完成签到 ,获得积分10
20秒前
20秒前
20秒前
22秒前
FancyShi发布了新的文献求助50
24秒前
A水暖五金批发张哥完成签到,获得积分10
25秒前
科研通AI5应助杜杜采纳,获得10
26秒前
26秒前
巴黎的劉发布了新的文献求助30
27秒前
SYLH应助研友_CCQ_M采纳,获得10
27秒前
27秒前
29秒前
在水一方应助柴火妞采纳,获得10
29秒前
31秒前
QinQin发布了新的文献求助10
31秒前
33秒前
34秒前
杜杜发布了新的文献求助10
37秒前
Lucas应助阳光怀亦采纳,获得10
37秒前
39秒前
40秒前
41秒前
忧虑的靖巧完成签到 ,获得积分10
41秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
The acute effects of different percentages of blood flow restrictions on all-out back squat exercise 200
How We Sold Our Future: The Failure to Fight Climate Change 200
Lab Dog: What Global Science Owes American Beagles 200
Encyclopaedia Britannica 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824635
求助须知:如何正确求助?哪些是违规求助? 3366892
关于积分的说明 10443443
捐赠科研通 3086239
什么是DOI,文献DOI怎么找? 1697792
邀请新用户注册赠送积分活动 816541
科研通“疑难数据库(出版商)”最低求助积分说明 769761