iDHS-DPPE: a method based on dual-path parallel ensemble decision for DNase I hypersensitive sites prediction

染色质 计算生物学 人工智能 计算机科学 劈理(地质) 机器学习 基因 生物 遗传学 古生物学 断裂(地质)
作者
Xuebin Lv,Yufeng Wang,Hong‐Wen Liu
标识
DOI:10.1117/12.2667447
摘要

The DNase I Hypersensitive site (DHS) is the chromatin region that exhibits a hypersensitive response to cleavage by the DNase I enzyme. It is a universal marker for regulatory DNA and associated with genetic variation in a wide range of diseases and phenotypic traits. However, traditional experimental methods have limited the rapid detection of DHS as well as its development. Therefore, effective and accurate methods to explore potential DHSs need to be developed urgently. In this task, a deep learning approach called iDHS-DPPE to predict DHSs in different cell types and developmental stages of the mouse. iDHS-DPPE uses a dual-path parallel integrated neural network to identify DHSs accurately. First, the DNA sequence is segmented into 2-mers to extract information. Then, the DHSs accurately-attention model captures remote dependencies and the MSFRN model enables hierarchical information fusion. The dual models are trained separately to enhance the feature information. Finally, the ensemble decision of two models yields the prediction results, enabling the integration of information from multiple views. The average AUC across all datasets was 93.1% and 93.3% in the 5-fold cross-validation and independent testing experiments, respectively. The experimental results demonstrate that iDHS-DPPE outperforms the state-of-the-art method on all datasets, proving that iDHS-DPPE is effective and reliable for identifying DHSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
852应助jitanxiang采纳,获得10
2秒前
2秒前
2秒前
尊敬友易完成签到,获得积分10
3秒前
阿Siu发布了新的文献求助10
3秒前
Jasper应助是的是的采纳,获得10
3秒前
clyde凌丫发布了新的文献求助10
4秒前
士心完成签到,获得积分10
5秒前
111发布了新的文献求助10
6秒前
6秒前
6秒前
马户的崛起完成签到,获得积分10
7秒前
早岁发布了新的文献求助10
7秒前
太陽发布了新的文献求助10
8秒前
Phoo完成签到 ,获得积分10
8秒前
赘婿应助共产主义战士采纳,获得10
8秒前
慕青应助幽默的依秋采纳,获得10
9秒前
9秒前
阿Siu完成签到,获得积分10
10秒前
10秒前
huohuo发布了新的文献求助10
10秒前
友好的雪碧完成签到,获得积分10
11秒前
高高发布了新的文献求助10
12秒前
13秒前
14秒前
是的是的发布了新的文献求助10
15秒前
15秒前
Will发布了新的文献求助10
15秒前
健康的幻珊完成签到,获得积分10
15秒前
whuhustwit发布了新的文献求助10
16秒前
17秒前
18秒前
科目三应助郑思雨采纳,获得10
18秒前
丘比特应助高高采纳,获得10
19秒前
liagse发布了新的文献求助20
19秒前
19秒前
黄康发布了新的文献求助10
20秒前
jitanxiang发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794881
求助须知:如何正确求助?哪些是违规求助? 3339777
关于积分的说明 10297235
捐赠科研通 3056415
什么是DOI,文献DOI怎么找? 1676988
邀请新用户注册赠送积分活动 805034
科研通“疑难数据库(出版商)”最低求助积分说明 762286