Emerging uses of artificial intelligence in breast and axillary ultrasound

医学 乳腺癌 乳腺超声检查 乳腺摄影术 腋窝淋巴结 乳房成像 超声波 放射科 腋窝 医学物理学 机器学习 人工智能 癌症 计算机科学 内科学
作者
Christopher Trepanier,Alice S. Huang,Michael Z. Liu,Richard Ha
出处
期刊:Clinical Imaging [Elsevier BV]
卷期号:100: 64-68 被引量:5
标识
DOI:10.1016/j.clinimag.2023.05.007
摘要

Breast ultrasound is a valuable adjunctive tool to mammography in detecting breast cancer, especially in women with dense breasts. Ultrasound also plays an important role in staging breast cancer by assessing axillary lymph nodes. However, its utility is limited by operator dependence, high recall rate, low positive predictive value and low specificity. These limitations present an opportunity for artificial intelligence (AI) to improve diagnostic performance and pioneer novel uses of ultrasound. Research in developing AI for radiology has flourished over the past few years. A subset of AI, deep learning, uses interconnected computational nodes to form a neural network, which extracts complex visual features from image data to train itself into a predictive model. This review summarizes several key studies evaluating AI programs' performance in predicting breast cancer and demonstrates that AI can assist radiologists and address limitations of ultrasound by acting as a decision support tool. This review also touches on how AI programs allow for novel predictive uses of ultrasound, particularly predicting molecular subtypes of breast cancer and response to neoadjuvant chemotherapy, which have the potential to change how breast cancer is managed by providing non-invasive prognostic and treatment data from ultrasound images. Lastly, this review explores how AI programs demonstrate improved diagnostic accuracy in predicting axillary lymph node metastasis. The limitations and future challenges in developing and implementing AI for breast and axillary ultrasound will also be discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳惮完成签到,获得积分10
刚刚
Wang完成签到,获得积分10
刚刚
丘比特应助白菜采纳,获得10
刚刚
希光光发布了新的文献求助10
1秒前
蔚亭完成签到,获得积分10
1秒前
嬴政飞完成签到,获得积分10
2秒前
zzzzz完成签到,获得积分10
3秒前
lixinyue完成签到 ,获得积分10
4秒前
soory完成签到,获得积分10
5秒前
取法乎上完成签到 ,获得积分10
6秒前
欣慰的书本完成签到 ,获得积分10
6秒前
御风完成签到,获得积分10
8秒前
吴大语完成签到,获得积分10
8秒前
格瑞格完成签到,获得积分10
10秒前
画卷完成签到 ,获得积分10
11秒前
橘子的哈哈怪完成签到,获得积分10
11秒前
12秒前
magic_sweets完成签到,获得积分10
12秒前
华仔应助樱香音子采纳,获得10
13秒前
Amy完成签到,获得积分10
15秒前
加油少年完成签到,获得积分10
15秒前
大媛大靳吃地瓜完成签到,获得积分10
16秒前
小怪兽完成签到,获得积分10
21秒前
yaya完成签到 ,获得积分10
23秒前
六步郎完成签到,获得积分10
24秒前
25秒前
奔跑西木完成签到 ,获得积分10
26秒前
ForComposites完成签到,获得积分10
27秒前
鹏笑完成签到,获得积分10
27秒前
w婷完成签到 ,获得积分10
27秒前
28秒前
28秒前
29秒前
luluyang完成签到 ,获得积分10
29秒前
哈密哈密完成签到,获得积分10
29秒前
勤劳元瑶完成签到,获得积分10
30秒前
花卷完成签到 ,获得积分10
30秒前
rgjipeng完成签到,获得积分10
31秒前
九月完成签到,获得积分10
31秒前
悦耳的绿旋完成签到,获得积分10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340708
关于积分的说明 10301290
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626