Emerging uses of artificial intelligence in breast and axillary ultrasound

医学 乳腺癌 乳腺超声检查 乳腺摄影术 腋窝淋巴结 乳房成像 超声波 放射科 腋窝 医学物理学 机器学习 人工智能 癌症 计算机科学 内科学
作者
Christopher Trepanier,Alice Huang,Michael Z. Liu,Richard Ha
出处
期刊:Clinical Imaging [Elsevier BV]
卷期号:100: 64-68 被引量:8
标识
DOI:10.1016/j.clinimag.2023.05.007
摘要

Breast ultrasound is a valuable adjunctive tool to mammography in detecting breast cancer, especially in women with dense breasts. Ultrasound also plays an important role in staging breast cancer by assessing axillary lymph nodes. However, its utility is limited by operator dependence, high recall rate, low positive predictive value and low specificity. These limitations present an opportunity for artificial intelligence (AI) to improve diagnostic performance and pioneer novel uses of ultrasound. Research in developing AI for radiology has flourished over the past few years. A subset of AI, deep learning, uses interconnected computational nodes to form a neural network, which extracts complex visual features from image data to train itself into a predictive model. This review summarizes several key studies evaluating AI programs' performance in predicting breast cancer and demonstrates that AI can assist radiologists and address limitations of ultrasound by acting as a decision support tool. This review also touches on how AI programs allow for novel predictive uses of ultrasound, particularly predicting molecular subtypes of breast cancer and response to neoadjuvant chemotherapy, which have the potential to change how breast cancer is managed by providing non-invasive prognostic and treatment data from ultrasound images. Lastly, this review explores how AI programs demonstrate improved diagnostic accuracy in predicting axillary lymph node metastasis. The limitations and future challenges in developing and implementing AI for breast and axillary ultrasound will also be discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suwan完成签到,获得积分10
刚刚
冷静战斗机完成签到,获得积分10
刚刚
cetomacrogol完成签到,获得积分10
1秒前
penghuiye完成签到,获得积分10
1秒前
labordoc完成签到,获得积分10
1秒前
生言生语完成签到,获得积分10
1秒前
耳朵暴富富完成签到,获得积分10
1秒前
VV完成签到,获得积分10
1秒前
会飞的猪完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
csc发布了新的文献求助10
3秒前
重要的冰凡完成签到,获得积分10
3秒前
宽宽完成签到,获得积分10
3秒前
3秒前
jnum1完成签到,获得积分10
3秒前
打打应助嗯哼采纳,获得10
3秒前
万能图书馆应助何蕙茹采纳,获得10
3秒前
跳跃幻儿完成签到,获得积分10
4秒前
漫溢阳光完成签到 ,获得积分0
4秒前
无奈镜子完成签到,获得积分10
4秒前
陈艳林完成签到,获得积分10
4秒前
dyd完成签到,获得积分10
5秒前
人生苦短完成签到,获得积分10
6秒前
qqa发布了新的文献求助10
6秒前
jnum1发布了新的文献求助10
6秒前
73Jennie123完成签到,获得积分10
6秒前
ElsaFan完成签到,获得积分10
6秒前
蓝莲花完成签到 ,获得积分10
7秒前
7秒前
喵喵完成签到 ,获得积分10
7秒前
梁晓玲完成签到,获得积分10
7秒前
小野狼完成签到,获得积分10
7秒前
7秒前
醉熏的伊发布了新的文献求助30
8秒前
荡乎宇宙如虚舟完成签到,获得积分10
8秒前
桐桐应助笨笨善若采纳,获得10
8秒前
二二二完成签到 ,获得积分10
9秒前
Lig完成签到,获得积分10
9秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Chitosan brush for professional removal of plaque in mild peri-implantitis 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075387
求助须知:如何正确求助?哪些是违规求助? 3614193
关于积分的说明 11471266
捐赠科研通 3332286
什么是DOI,文献DOI怎么找? 1831633
邀请新用户注册赠送积分活动 901588
科研通“疑难数据库(出版商)”最低求助积分说明 820344