Application of TVD‐Net for sagittal alignment and instability measurements in cervical spine radiographs

矢状面 射线照相术 颈椎 人工智能 医学 数字射线照相术 柯布角 颈椎 计算机科学 计算机视觉 口腔正畸科 放射科 外科
作者
Qiangqiang Xiao,Yao Chen,Jianxi Wang,Fazhi Zang,Yunhao Wang,Genjiang Zheng,Kunyu Yang,Rongcheng Zhang,Bo Hu,Huajiang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4182-4196 被引量:2
标识
DOI:10.1002/mp.16440
摘要

Cervical spinal malalignment and instability are frequently occurring pathological conditions involving neck pain, radiculopathy, and myelopathy, often requiring surgical intervention. Accurate assessment of cervical alignment and instability are essential in surgical planning and evaluating postoperative outcomes.To automatically measure the sagittal alignment and instability of the cervical spine, we develop a novel deep-learning model by detecting landmarks on cervical radiographs.We introduce the transformer-embedded residual network (ResNet) as the network's core to automatically identify vertebral landmarks on digital and film-transformed cervical radiographs, and simultaneously measure the segmental Cobb angle and horizontal displacement. A Transformer Module was embedded into the latent space to extract the relationship between different vertebrae. Then a Rotating Attention Module was integrated between the encoder-decoder pairs to highlight the key points and maintain more details. Finally, a Vector Loss Module was proposed to restrain the orientation of the adjacent vertebra to reduce misdetection. All images were obtained from local hospital. Digital images were split into training, validation, and test subsets (896, 225, and 353 images, respectively). Likewise, film-transformed images were split into 404, 115, and 150 images, respectively. The results of the model were compared with manual measurements.Our deep learning algorithm achieved mean absolute difference (MAD) at a level of 2.20° and 2.33°, symmetric mean absolute error(SMAPE)at 16.63% and 19.35%, respectively, when measuring Cobb angle on digital images and films. On evaluating cervical instability, the diagnostic accuracy, sensitivity, specificity, precision, and F1-score evaluation metrics were calculated. The corresponding values were 89.80%, 86.49%, 90.68%, 71.11%, and 78.05% on digital images, and 90.00%, 83.78%, 91.15%, 75.61%, and 79.49% on film-transformed images, which were comparable to experienced surgeons. Visualization results demonstrated robust effectiveness in subjects with severe osteophytes or artifacts.This study presents a novel and efficient deep-learning model to assist landmarks identification and angulation and displacement calculation on lateral cervical spine radiographs, and demonstrates excellent accuracy in measuring cervical alignment and sound sensitivity and specificity in cervical instability diagnosis. It should be helpful for future research and clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xueshidaheng完成签到,获得积分0
刚刚
chenkj完成签到,获得积分10
1秒前
nanostu完成签到,获得积分10
1秒前
EricSai完成签到,获得积分10
2秒前
吐司炸弹完成签到,获得积分10
2秒前
lynn完成签到 ,获得积分10
2秒前
Brief完成签到,获得积分0
2秒前
Ammr完成签到 ,获得积分10
3秒前
儒雅的若翠完成签到,获得积分10
3秒前
ayitime发布了新的文献求助20
3秒前
shiqiang mu应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
此生不换完成签到,获得积分10
3秒前
benben应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
4秒前
欣慰外套完成签到 ,获得积分10
4秒前
songyu完成签到,获得积分10
5秒前
6秒前
呵呵喊我完成签到,获得积分10
8秒前
酷酷的王完成签到 ,获得积分10
9秒前
heija完成签到,获得积分10
9秒前
10秒前
木之尹完成签到 ,获得积分10
11秒前
111发布了新的文献求助10
13秒前
yy爱科研完成签到,获得积分10
16秒前
江湖笑发布了新的文献求助10
16秒前
Murphy~完成签到,获得积分10
19秒前
RichieXU完成签到,获得积分10
19秒前
19秒前
Cohenyun完成签到,获得积分10
20秒前
111完成签到,获得积分10
21秒前
22秒前
研友_RLNGMn发布了新的文献求助10
23秒前
Owen应助111采纳,获得10
24秒前
寒冷寻桃完成签到 ,获得积分10
24秒前
WW完成签到 ,获得积分10
24秒前
树袋熊和考拉完成签到,获得积分20
26秒前
钱仙人完成签到,获得积分10
26秒前
26秒前
咸鱼已躺平完成签到,获得积分10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092276
求助须知:如何正确求助?哪些是违规求助? 3630929
关于积分的说明 11507833
捐赠科研通 3342015
什么是DOI,文献DOI怎么找? 1836948
邀请新用户注册赠送积分活动 904840
科研通“疑难数据库(出版商)”最低求助积分说明 822585