Application of TVD‐Net for sagittal alignment and instability measurements in cervical spine radiographs

矢状面 射线照相术 颈椎 人工智能 医学 数字射线照相术 柯布角 颈椎 计算机科学 计算机视觉 口腔正畸科 放射科 外科
作者
Qiangqiang Xiao,Yao Chen,Jianxi Wang,Fazhi Zang,Yunhao Wang,Genjiang Zheng,Kunyu Yang,Rongcheng Zhang,Bo Hu,Huajiang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4182-4196 被引量:6
标识
DOI:10.1002/mp.16440
摘要

Abstract Background Cervical spinal malalignment and instability are frequently occurring pathological conditions involving neck pain, radiculopathy, and myelopathy, often requiring surgical intervention. Accurate assessment of cervical alignment and instability are essential in surgical planning and evaluating postoperative outcomes. Purpose To automatically measure the sagittal alignment and instability of the cervical spine, we develop a novel deep‐learning model by detecting landmarks on cervical radiographs. Methods We introduce the transformer‐embedded residual network (ResNet) as the network's core to automatically identify vertebral landmarks on digital and film‐transformed cervical radiographs, and simultaneously measure the segmental Cobb angle and horizontal displacement. A Transformer Module was embedded into the latent space to extract the relationship between different vertebrae. Then a Rotating Attention Module was integrated between the encoder‐decoder pairs to highlight the key points and maintain more details. Finally, a Vector Loss Module was proposed to restrain the orientation of the adjacent vertebra to reduce misdetection. All images were obtained from local hospital. Digital images were split into training, validation, and test subsets (896, 225, and 353 images, respectively). Likewise, film‐transformed images were split into 404, 115, and 150 images, respectively. The results of the model were compared with manual measurements. Results Our deep learning algorithm achieved mean absolute difference (MAD) at a level of 2.20° and 2.33°, symmetric mean absolute error(SMAPE)at 16.63% and 19.35%, respectively, when measuring Cobb angle on digital images and films. On evaluating cervical instability, the diagnostic accuracy, sensitivity, specificity, precision, and F1‐score evaluation metrics were calculated. The corresponding values were 89.80%, 86.49%, 90.68%, 71.11%, and 78.05% on digital images, and 90.00%, 83.78%, 91.15%, 75.61%, and 79.49% on film‐transformed images, which were comparable to experienced surgeons. Visualization results demonstrated robust effectiveness in subjects with severe osteophytes or artifacts. Conclusion This study presents a novel and efficient deep‐learning model to assist landmarks identification and angulation and displacement calculation on lateral cervical spine radiographs, and demonstrates excellent accuracy in measuring cervical alignment and sound sensitivity and specificity in cervical instability diagnosis. It should be helpful for future research and clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jrzsy完成签到,获得积分10
2秒前
2秒前
2秒前
NexusExplorer应助葵小葵采纳,获得10
3秒前
佳佳528完成签到,获得积分10
3秒前
万能图书馆应助潞垚采纳,获得10
3秒前
上官若男应助珍珍采纳,获得10
3秒前
4秒前
哈哈发布了新的文献求助10
4秒前
wxh发布了新的文献求助20
4秒前
4秒前
zjw发布了新的文献求助10
5秒前
5秒前
yii发布了新的文献求助10
6秒前
ff发布了新的文献求助10
7秒前
zxY发布了新的文献求助10
7秒前
8秒前
北北贝贝完成签到,获得积分10
8秒前
Young发布了新的文献求助10
9秒前
云游归尘发布了新的文献求助10
9秒前
HongY完成签到,获得积分10
10秒前
shidandan完成签到 ,获得积分10
10秒前
10秒前
深情安青应助爱撞墙的猫采纳,获得10
11秒前
种花兔完成签到,获得积分10
12秒前
摆烂完成签到,获得积分10
12秒前
pluto应助佳佳528采纳,获得10
12秒前
yii完成签到,获得积分10
13秒前
13秒前
慈祥的蛋挞完成签到 ,获得积分10
13秒前
JamesPei应助eraygt采纳,获得10
13秒前
13秒前
燕烟完成签到,获得积分10
13秒前
钟昊发布了新的文献求助10
13秒前
源缘发布了新的文献求助10
15秒前
李健的小迷弟应助chaotong采纳,获得10
16秒前
摆烂发布了新的文献求助20
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605