Attribute-Based Membership Inference Attacks and Defenses on GANs

过度拟合 计算机科学 推论 人工智能 一般化 机器学习 样品(材料) 图像(数学) 模式识别(心理学) 数据挖掘 人工神经网络 数学 数学分析 化学 色谱法
作者
Hui Sun,Tianqing Zhu,Jie Li,Shoulin Ji,Wanlei Zhou
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:21 (4): 2376-2393 被引量:5
标识
DOI:10.1109/tdsc.2023.3305591
摘要

With breakthroughs in high-resolution image generation, applications for disentangled generative adversarial networks (GANs) have attracted much attention. At the same time, the privacy issues associated with GAN models have been raising many concerns. Membership inference attacks (MIAs), where an adversary attempts to determine whether or not a sample has been used to train the victim model, are a major risk with GANs. In prior research, scholars have shown that successful MIAs can be mounted by leveraging overfit images. However, high-resolution images make the existing MIAs fail due to their complexity. And the nature of disentangled GANs is such that the attributes are overfitting, which means that, for an MIA to be successful, it must likely be based on overfitting attributes. Furthermore, given the empirical difficulties with obtaining independent and identically distributed (IID) candidate samples, choosing the non-trivial attributes of candidate samples as the target for exploring overfitting would be a more preferable choice. Hence, in this paper, we propose a series of attribute-based MIAs that considers both black-box and white-box settings. The attacks are performed on the generator, and the inferences are derived by overfitting the non-trivial attributes. Additionally, we put forward a novel perspective on model generalization and a possible defense by evaluating the overfitting status of each individual attribute. A series of empirical evaluations in both settings demonstrate that the attacks remain stable and successful when using non-IID candidate samples. Further experiments illustrate that each attribute exhibits a distinct overfitting status. Moreover, manually generalizing highly overfitting attributes significantly reduces the risk of privacy leaks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助西西采纳,获得10
刚刚
wangshaung完成签到,获得积分10
刚刚
1秒前
科研通AI5应助天真的迎天采纳,获得10
3秒前
文二目分完成签到 ,获得积分10
3秒前
搜集达人应助依依采纳,获得10
3秒前
A水暖五金批发张哥完成签到,获得积分10
4秒前
Felix发布了新的文献求助10
5秒前
脑洞疼应助叮咚叮采纳,获得10
5秒前
yml完成签到 ,获得积分10
8秒前
鱿鱼卷卷完成签到,获得积分10
10秒前
无花果应助Felix采纳,获得10
10秒前
JamesPei应助勤奋月饼采纳,获得10
13秒前
鼓励男孩完成签到,获得积分10
14秒前
kevin1018完成签到,获得积分10
15秒前
16秒前
小马甲应助心灵美傲薇采纳,获得10
16秒前
蓝丝绒完成签到,获得积分20
17秒前
18秒前
陌殇完成签到 ,获得积分10
20秒前
白勺发布了新的文献求助10
21秒前
22秒前
大力元霜完成签到,获得积分10
22秒前
南枳发布了新的文献求助10
23秒前
无味完成签到,获得积分10
24秒前
打打应助火星上的山灵采纳,获得10
25秒前
勤奋月饼发布了新的文献求助10
25秒前
YH应助旅人采纳,获得50
27秒前
深情安青应助有魅力山雁采纳,获得10
28秒前
丘比特应助LL采纳,获得10
28秒前
Bruce完成签到,获得积分10
28秒前
29秒前
WAYNE完成签到 ,获得积分10
30秒前
小虎同学完成签到,获得积分10
30秒前
aaaaa完成签到,获得积分10
30秒前
Lucas应助白勺采纳,获得10
30秒前
无语的断缘完成签到,获得积分10
31秒前
时尚的秋白完成签到,获得积分20
31秒前
Lucas应助李物采纳,获得10
32秒前
xixi完成签到 ,获得积分10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846311
求助须知:如何正确求助?哪些是违规求助? 3388664
关于积分的说明 10553799
捐赠科研通 3109159
什么是DOI,文献DOI怎么找? 1713376
邀请新用户注册赠送积分活动 824740
科研通“疑难数据库(出版商)”最低求助积分说明 775004