Research on fast marking method for indicator diagram of pumping well based on K-means clustering

聚类分析 散点图 图表 计算机科学 数据挖掘 人工智能 集合(抽象数据类型) 模式识别(心理学) 人工神经网络 特征提取 特征(语言学) 样品(材料) 机器学习 语言学 哲学 化学 色谱法 数据库 程序设计语言
作者
Xiang Wang,Zhiwei Shao,Yancen Shen,Yanfeng He
出处
期刊:Heliyon [Elsevier]
卷期号:9 (10): e20468-e20468 被引量:9
标识
DOI:10.1016/j.heliyon.2023.e20468
摘要

Indicator diagram is the key basis for fault diagnosis of pumping wells in oil exploitation. With the rapid development of machine learning, the fault diagnosis of indicator diagram based on deep learning has garnered increasing attention. This kind of methods train neural network models with marked samples, and then inputs images into the trained models and outputs their categories. At present, the preparation of indicator diagram sample set relies on experts' analysis of indicator diagram images one by one. However, it involves extensive manual work and manual marking is prone to errors, so the marked samples are often insufficient in quantity. In order to quickly mark a large number of indicator diagram samples, the oil well data was plotted into standardized indicator diagram, and then three feature extraction methods for indicator diagrams were proposed: feature extraction based on original vector, feature extraction based on three-dimensional pixel tensor, feature extraction based on convolutional neural network. These methods convert the indicator diagram into corresponding feature vectors, which are then clustered using the K-means clustering algorithm, enabling the corresponding indicator diagrams to be classified into different categories based on the clustering results. Using 20,000 randomly selected pieces of data from 100 pumping wells, this study clusters the sample set using the three proposed methods. The results indicated that the time consumption were 0.2, 8.3, and 0.7 h, with accuracy rates of 98%, 92%, and 95%, respectively. For indicator diagrams, the clustering method based on the original vector has outstanding performance in terms of efficiency and accuracy. This provides an automatic tool for the preparation of the pumping well fault diagnosis dataset, and its efficiency can be increased by tens of times compared with manual marking.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PHI完成签到 ,获得积分10
14秒前
詹姆斯哈登完成签到,获得积分10
15秒前
橘子味的橙子完成签到 ,获得积分10
16秒前
蛋十二完成签到 ,获得积分10
18秒前
闫栋完成签到 ,获得积分10
19秒前
xin完成签到,获得积分20
20秒前
潇洒的长颈鹿完成签到 ,获得积分10
21秒前
一米阳光完成签到,获得积分10
24秒前
logolush完成签到 ,获得积分10
24秒前
三心草完成签到 ,获得积分10
25秒前
28秒前
athena完成签到 ,获得积分10
31秒前
35秒前
小男孩完成签到,获得积分10
36秒前
38秒前
粉面菜蛋发布了新的文献求助10
39秒前
追寻的纸鹤完成签到 ,获得积分10
41秒前
42秒前
Justtry完成签到,获得积分10
43秒前
47秒前
49秒前
_hhhjhhh完成签到 ,获得积分10
49秒前
路人甲完成签到,获得积分10
51秒前
星岛完成签到,获得积分10
52秒前
微笑的傲旋完成签到,获得积分10
58秒前
孤独丹秋完成签到,获得积分10
1分钟前
白鲜香精完成签到,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
猫猫完成签到 ,获得积分10
1分钟前
调皮寒凝发布了新的文献求助10
1分钟前
Danish完成签到,获得积分10
1分钟前
wyz完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
1分钟前
李大胖胖完成签到 ,获得积分10
1分钟前
oyly完成签到 ,获得积分10
1分钟前
惜曦完成签到 ,获得积分10
1分钟前
怡然猎豹完成签到,获得积分0
1分钟前
t铁核桃1985完成签到 ,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
The recovery-stress questionnaires : user manual 600
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856265
求助须知:如何正确求助?哪些是违规求助? 6318566
关于积分的说明 15634159
捐赠科研通 4970862
什么是DOI,文献DOI怎么找? 2681014
邀请新用户注册赠送积分活动 1624985
关于科研通互助平台的介绍 1581957