Deep learning‐based fast denoising of Monte Carlo dose calculation in carbon ion radiotherapy

蒙特卡罗方法 成像体模 计算机科学 质量保证 试验装置 深度学习 人工智能 算法 核医学 数学 统计 医学 病理 外部质量评估
作者
Xinyang Zhang,Hui Zhang,Jian Wang,Yuanyuan Ma,Xinguo Liu,Zhongying Dai,Rui He,Pengbo He,Qiang Li
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7314-7323 被引量:11
标识
DOI:10.1002/mp.16719
摘要

Plan verification is one of the important steps of quality assurance (QA) in carbon ion radiotherapy. Conventional methods of plan verification are based on phantom measurement, which is labor-intensive and time-consuming. Although the plan verification method based on Monte Carlo (MC) simulation provides a more accurate modeling of the physics, it is also time-consuming when simulating with a large number of particles. Therefore, how to ensure the accuracy of simulation results while reducing simulation time is the current difficulty and focus.The purpose of this work was to evaluate the feasibility of using deep learning-based MC denoising method to accelerate carbon-ion radiotherapy plan verification.Three models, including CycleGAN, 3DUNet and GhostUNet with Ghost module, were used to denoise the 1 × 106 carbon ions-based MC dose distribution to the accuracy of 1 × 108 carbon ions-based dose distribution. The CycleGAN's generator, 3DUNet and GhostUNet were all derived from the 3DUNet network. A total of 59 cases including 29 patients with head-and-neck cancers and 30 patients with lung cancers were collected, and 48 cases were randomly selected as the training set of the CycleGAN network and six cases as the test set. For the 3DUNet and GhostUNet models, the numbers of training set, validation set, and test set were 47, 6, and 6, respectively. Finally, the three models were evaluated qualitatively and quantitatively using RMSE and three-dimensional gamma analysis (3 mm, 3%).The three end-to-end trained models could be used for denoising the 1 × 106 carbon ions-based dose distribution, and their generalization was proved. The GhostUNet obtained the lowest RMSE value of 0.075, indicating the smallest difference between its denoised and 1 × 108 carbon ions-based dose distributions. The average gamma passing rate (GPR) between the GhostUNet denoising-based versus 1 × 108 carbon ions-based dose distributions was 99.1%, higher than that of the CycleGAN at 94.3% and the 3DUNet at 96.2%. Among the three models, the GhostUNet model had the fewest parameters (4.27 million) and the shortest training time (99 s per epoch) but achieved the best denoising results.The end-to-end deep network GhostUNet outperforms the CycleGAN, 3DUNet models in denoising MC dose distributions for carbon ion radiotherapy. The network requires less than 5 s to denoise a sample of MC simulation with few particles to obtain a qualitative and quantitative result comparable to the dose distribution simulated by MC with relatively large number particles, offering a significant reduction in computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞的书芹完成签到,获得积分10
2秒前
ksl完成签到 ,获得积分10
2秒前
陈粒完成签到 ,获得积分10
4秒前
害羞的雁易完成签到 ,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
独特的忆彤完成签到 ,获得积分10
12秒前
O_O完成签到 ,获得积分10
18秒前
草莓熊1215完成签到 ,获得积分10
19秒前
xiaoliu完成签到,获得积分10
22秒前
wwf完成签到,获得积分10
22秒前
霜之哀伤完成签到 ,获得积分10
24秒前
呆橘完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
30秒前
Hao完成签到,获得积分10
32秒前
32秒前
淡然以柳完成签到 ,获得积分10
35秒前
35秒前
guantlv发布了新的文献求助10
36秒前
小新完成签到 ,获得积分10
38秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
39秒前
王正浩完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
43秒前
老年学术废物完成签到 ,获得积分10
44秒前
沉沉完成签到 ,获得积分0
45秒前
亚亚完成签到 ,获得积分10
45秒前
lucia5354完成签到,获得积分10
46秒前
King完成签到 ,获得积分10
46秒前
我睡觉不会困12138完成签到 ,获得积分10
47秒前
莫晓岚完成签到 ,获得积分10
47秒前
ycc完成签到,获得积分10
51秒前
ZZZ完成签到 ,获得积分10
54秒前
朝与暮完成签到,获得积分10
56秒前
量子星尘发布了新的文献求助10
59秒前
星空完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
欢喜的尔冬完成签到,获得积分10
1分钟前
伊yan完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839