Towards specific cutting energy analysis in the machining of Inconel 601 alloy under sustainable cooling conditions

因科镍合金 材料科学 机械加工 线性回归 刀具磨损 表面粗糙度 能源消耗 波纹度 机械工程 机器学习 人工智能 计算机科学 冶金 合金 复合材料 工程类 电气工程
作者
Mehmet Erdi Korkmaz,Munish Kumar Gupta,Hakan Yılmaz,Nimel Sworna Ross,Mehmet Boy,Vinothkumar Sivalingam,Choon Kit Chan,Jeyagopi Raman
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:27: 4074-4087 被引量:23
标识
DOI:10.1016/j.jmrt.2023.10.192
摘要

Currently, the research efforts on machining indices such as tool wear, surface roughness, power consumption etc. is well reported in literature, but energy analysis based on material removal methods and machine learning has received comparatively little attention. Therefore, the present work deals with the research efforts on simultaneous reduction of specific cutting energy in sustainable machining of Inconel 601 alloy with different machine learning models. The studies were conducted using dry, minimum quantity lubrication (MQL), nano-MQL, cryogenic, and hybrid cooling methods (cryo-nano-MQL). The specific cutting energy (SCE) values were calculated based on the data obtained from power consumption and material removal rate. Subsequently, the SCE data is employed to construct the crucial maps, which are then utilized in several sophisticated machine learning models, including Multiple Linear Regression, Lasso Regression, Bayesian Ridge Regression, and Voting Regressor, to facilitate the predictive modeling of outcomes. The findings of the study indicate that the Bayesian model exhibits a comparatively reduced error rate and a closely aligned R2 value when compared to other prediction models. Moreover, as a novelty, nanoparticles addition into hybrid cooling methods (cryo + nano + MQL) also showed better performance as well as 0.3 % less specific cutting energy than only cryo method which is previously used in former studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
是小越啊发布了新的文献求助10
1秒前
青岑发布了新的文献求助10
1秒前
贾不可完成签到,获得积分10
2秒前
Red-Rain发布了新的文献求助10
3秒前
3秒前
混子发布了新的文献求助10
4秒前
天麟发布了新的文献求助10
5秒前
5秒前
萨芬完成签到,获得积分10
6秒前
李1完成签到,获得积分10
7秒前
sun完成签到,获得积分10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
13秒前
顾末完成签到,获得积分10
15秒前
科研通AI6应助夕夕采纳,获得10
15秒前
15秒前
15秒前
L_Cheung发布了新的文献求助40
15秒前
李爱国应助是小越啊采纳,获得10
15秒前
陈全刚完成签到,获得积分10
17秒前
18秒前
19秒前
longer发布了新的文献求助10
20秒前
20秒前
冰柠檬发布了新的文献求助10
20秒前
渔秋一发布了新的文献求助10
20秒前
上官若男应助liang采纳,获得10
21秒前
23秒前
23秒前
斯文败类应助水木子尔采纳,获得10
24秒前
韭菜发布了新的文献求助10
25秒前
英俊的铭应助混子采纳,获得10
25秒前
王粒伊完成签到,获得积分10
26秒前
陈雨行发布了新的文献求助20
26秒前
27秒前
28秒前
满意沛槐发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540192
求助须知:如何正确求助?哪些是违规求助? 4626761
关于积分的说明 14600756
捐赠科研通 4567792
什么是DOI,文献DOI怎么找? 2504197
邀请新用户注册赠送积分活动 1481880
关于科研通互助平台的介绍 1453505