已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synthesized 7T MPRAGE From 3T MPRAGE Using Generative Adversarial Network and Validation in Clinical Brain Imaging: A Feasibility Study

对比度(视觉) 威尔科克森符号秩检验 图像质量 组内相关 核医学 计算机科学 医学 人工智能 图像(数学) 曼惠特尼U检验 临床心理学 内科学 心理测量学
作者
Caohui Duan,Xiangbing Bian,Kun Cheng,Jinhao Lyu,Yongqin Xiong,Sa Xiao,Xueyang Wang,Qi Duan,Chenxi Li,Jiayu Huang,Jianxing Hu,Z. Wang,Xin Zhou,Xin Lou
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (5): 1620-1629 被引量:9
标识
DOI:10.1002/jmri.28944
摘要

Background Ultra‐high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive, and is not widely accessible in clinical practice. Purpose To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibility of this approach for brain imaging. Study Type Prospective. Population 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the ratio 4:1. Sequence and Field Strength T1‐weighted nonenhanced or contrast‐enhanced magnetization‐prepared rapid acquisition gradient‐echo sequence at both 3T and 7T. Assessment A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast‐enhanced paired acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5‐point Likert scales. Statistical Tests Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant. Results Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The average time to generate synthetic images was ~11.4 msec per slice (2.95 sec per participant). The synthetic 7T images achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and contrast‐enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T images in terms of all the evaluation criteria for both nonenhanced and contrast‐enhanced subgroups ( P ≥ 0.180). Data Conclusion The deep learning model has potential to generate synthetic 7T images with similar image quality to acquired 7T images. Level of Evidence 2 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助juan采纳,获得10
1秒前
杨乐多发布了新的文献求助10
1秒前
2秒前
2秒前
fengyu完成签到,获得积分10
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得50
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
orixero应助smt采纳,获得10
4秒前
duoduo完成签到 ,获得积分10
4秒前
6秒前
科研通AI6应助demon采纳,获得10
7秒前
纯情的天奇完成签到 ,获得积分10
7秒前
炒鸡蛋发布了新的文献求助10
8秒前
refd完成签到,获得积分10
8秒前
8秒前
ChinaNiu发布了新的文献求助30
9秒前
呆萌的高跟鞋完成签到,获得积分10
10秒前
Esperanza完成签到,获得积分10
10秒前
Hamster发布了新的文献求助10
11秒前
14秒前
蔡6705发布了新的文献求助10
14秒前
15秒前
15秒前
思源应助贤惠的大山采纳,获得10
15秒前
16秒前
ChinaNiu完成签到,获得积分10
16秒前
炒鸡蛋完成签到,获得积分10
17秒前
喵喵发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
smt发布了新的文献求助10
20秒前
西西完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312261
求助须知:如何正确求助?哪些是违规求助? 4456030
关于积分的说明 13865116
捐赠科研通 4344428
什么是DOI,文献DOI怎么找? 2385847
邀请新用户注册赠送积分活动 1380221
关于科研通互助平台的介绍 1348578