已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Synthesized 7T MPRAGE From 3T MPRAGE Using Generative Adversarial Network and Validation in Clinical Brain Imaging: A Feasibility Study

对比度(视觉) 威尔科克森符号秩检验 图像质量 组内相关 核医学 计算机科学 医学 人工智能 图像(数学) 曼惠特尼U检验 临床心理学 内科学 心理测量学
作者
Caohui Duan,Xiangbing Bian,Kun Cheng,Jinhao Lyu,Yongqin Xiong,Sa Xiao,Xueyang Wang,Qi Duan,Chenxi Li,Jiayu Huang,Jianxing Hu,Z. Wang,Xin Zhou,Xin Lou
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (5): 1620-1629 被引量:4
标识
DOI:10.1002/jmri.28944
摘要

Background Ultra‐high field 7T MRI can provide excellent tissue contrast and anatomical details, but is often cost prohibitive, and is not widely accessible in clinical practice. Purpose To generate synthetic 7T images from widely acquired 3T images with deep learning and to evaluate the feasibility of this approach for brain imaging. Study Type Prospective. Population 33 healthy volunteers and 89 patients with brain diseases, divided into training, and evaluation datasets in the ratio 4:1. Sequence and Field Strength T1‐weighted nonenhanced or contrast‐enhanced magnetization‐prepared rapid acquisition gradient‐echo sequence at both 3T and 7T. Assessment A generative adversarial network (SynGAN) was developed to produce synthetic 7T images from 3T images as input. SynGAN training and evaluation were performed separately for nonenhanced and contrast‐enhanced paired acquisitions. Qualitative image quality of acquired 3T and 7T images and of synthesized 7T images was evaluated by three radiologists in terms of overall image quality, artifacts, sharpness, contrast, and visualization of vessel using 5‐point Likert scales. Statistical Tests Wilcoxon signed rank tests to compare synthetic 7T images with acquired 7T and 3T images and intraclass correlation coefficients to evaluate interobserver variability. P < 0.05 was considered significant. Results Of the 122 paired 3T and 7T MRI scans, 66 were acquired without contrast agent and 56 with contrast agent. The average time to generate synthetic images was ~11.4 msec per slice (2.95 sec per participant). The synthetic 7T images achieved significantly improved tissue contrast and sharpness in comparison to 3T images in both nonenhanced and contrast‐enhanced subgroups. Meanwhile, there was no significant difference between acquired 7T and synthetic 7T images in terms of all the evaluation criteria for both nonenhanced and contrast‐enhanced subgroups ( P ≥ 0.180). Data Conclusion The deep learning model has potential to generate synthetic 7T images with similar image quality to acquired 7T images. Level of Evidence 2 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希希完成签到 ,获得积分10
刚刚
2秒前
HEYZCC完成签到 ,获得积分10
3秒前
suicone完成签到,获得积分10
5秒前
5秒前
8秒前
9秒前
姜露萍发布了新的文献求助30
9秒前
10秒前
Bob发布了新的文献求助10
12秒前
Albert发布了新的文献求助10
13秒前
15秒前
小新发布了新的文献求助10
19秒前
爆米花应助惜曦采纳,获得10
21秒前
三片叶子1453完成签到,获得积分10
24秒前
26秒前
26秒前
29秒前
as发布了新的文献求助10
30秒前
31秒前
31秒前
33秒前
Ava应助高帅采纳,获得20
33秒前
易槐发布了新的文献求助10
35秒前
36秒前
37秒前
某某发布了新的文献求助10
39秒前
39秒前
40秒前
40秒前
Owen应助Bob采纳,获得10
41秒前
欣慰雪巧完成签到 ,获得积分10
41秒前
41秒前
善莫大焉发布了新的文献求助10
43秒前
聪慧小霜应助查查采纳,获得10
44秒前
44秒前
hxylwt发布了新的文献求助10
45秒前
46秒前
乐乐应助小新采纳,获得10
52秒前
kokoko完成签到,获得积分10
55秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4183590
求助须知:如何正确求助?哪些是违规求助? 3719406
关于积分的说明 11722895
捐赠科研通 3398631
什么是DOI,文献DOI怎么找? 1864764
邀请新用户注册赠送积分活动 922353
科研通“疑难数据库(出版商)”最低求助积分说明 834021