控制理论(社会学)
控制器(灌溉)
弹道
人工神经网络
滑模控制
跟踪(教育)
李雅普诺夫函数
Lyapunov稳定性
计算机科学
自适应控制
径向基函数
理论(学习稳定性)
跟踪误差
工程类
控制工程
控制(管理)
人工智能
非线性系统
物理
心理学
教育学
天文
量子力学
机器学习
农学
生物
作者
Yudong Zhang,Leiying He,Jianneng Chen,Bo Yan,Chuanyu Wu
出处
期刊:Authorea - Authorea
日期:2023-11-22
标识
DOI:10.22541/au.170065037.74783609/v1
摘要
Tracking control of tendon-driven manipulators has become a prevalent research area. However, the existence of flexible elastic tendons generates substantial residual vibrations, resulting in difficulties for trajectory tracking control of the manipulator. This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control (RBFNNA-HSMC) method, which combines the dynamic model of the elastic tendon-driven manipulator (ETDM) with radial basis neural network adaptive control and hierarchical sliding mode control technology. The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance. The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller. In order to assess the effectiveness and adaptability of the proposed control method, simulations and experiments were performed on a two-DOF ETDM. The RBFNNA-HSM method shows superior tracking accuracy compared to traditional model-based HSM control. The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10 rad and 1.624×10 rad, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI