Machine learning and deep learning predictive models for long-term prognosis in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis

医学 检查表 人工智能 慢性阻塞性肺病 机器学习 接收机工作特性 科克伦图书馆 荟萃分析 系统回顾 梅德林 恶化 深度学习 内科学 物理疗法 重症监护医学 计算机科学 认知心理学 法学 政治学 心理学
作者
Luke Smith,Lauren Oakden‐Rayner,Alix Bird,Minyan Zeng,Minh‐Son To,Sutapa Mukherjee,Lyle J. Palmer
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (12): e872-e881 被引量:51
标识
DOI:10.1016/s2589-7500(23)00177-2
摘要

BackgroundMachine learning and deep learning models have been increasingly used to predict long-term disease progression in patients with chronic obstructive pulmonary disease (COPD). We aimed to summarise the performance of such prognostic models for COPD, compare their relative performances, and identify key research gaps.MethodsWe conducted a systematic review and meta-analysis to compare the performance of machine learning and deep learning prognostic models and identify pathways for future research. We searched PubMed, Embase, the Cochrane Library, ProQuest, Scopus, and Web of Science from database inception to April 6, 2023, for studies in English using machine learning or deep learning to predict patient outcomes at least 6 months after initial clinical presentation in those with COPD. We included studies comprising human adults aged 18–90 years and allowed for any input modalities. We reported area under the receiver operator characteristic curve (AUC) with 95% CI for predictions of mortality, exacerbation, and decline in forced expiratory volume in 1 s (FEV1). We reported the degree of interstudy heterogeneity using Cochran's Q test (significant heterogeneity was defined as p≤0·10 or I2>50%). Reporting quality was assessed using the TRIPOD checklist and a risk-of-bias assessment was done using the PROBAST checklist. This study was registered with PROSPERO (CRD42022323052).FindingsWe identified 3620 studies in the initial search. 18 studies were eligible, and, of these, 12 used conventional machine learning and six used deep learning models. Seven models analysed exacerbation risk, with only six reporting AUC and 95% CI on internal validation datasets (pooled AUC 0·77 [95% CI 0·69–0·85]) and there was significant heterogeneity (I2 97%, p<0·0001). 11 models analysed mortality risk, with only six reporting AUC and 95% CI on internal validation datasets (pooled AUC 0·77 [95% CI 0·74–0·80]) with significant degrees of heterogeneity (I2 60%, p=0·027). Two studies assessed decline in lung function and were unable to be pooled. Machine learning and deep learning models did not show significant improvement over pre-existing disease severity scores in predicting exacerbations (p=0·24). Three studies directly compared machine learning models against pre-existing severity scores for predicting mortality and pooled performance did not differ (p=0·57). Of the five studies that performed external validation, performance was worse than or equal to regression models. Incorrect handling of missing data, not reporting model uncertainty, and use of datasets that were too small relative to the number of predictive features included provided the largest risks of bias.InterpretationThere is limited evidence that conventional machine learning and deep learning prognostic models demonstrate superior performance to pre-existing disease severity scores. More rigorous adherence to reporting guidelines would reduce the risk of bias in future studies and aid study reproducibility.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子青发布了新的文献求助10
刚刚
雨碎寒江发布了新的文献求助10
刚刚
1秒前
111发布了新的文献求助30
1秒前
小郝发布了新的文献求助10
2秒前
judy完成签到,获得积分10
2秒前
彦卿发布了新的文献求助10
2秒前
2秒前
3秒前
玛卡巴卡发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
林夕发布了新的文献求助20
5秒前
su完成签到 ,获得积分10
5秒前
一只皮皮发布了新的文献求助10
6秒前
6秒前
mochifish发布了新的文献求助10
6秒前
Jouleken完成签到,获得积分0
6秒前
一一发布了新的文献求助10
7秒前
俏皮小土豆完成签到,获得积分10
7秒前
7秒前
11发布了新的文献求助10
7秒前
晓晓来了发布了新的文献求助10
7秒前
8秒前
小郝完成签到,获得积分10
8秒前
大白发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
魏魏完成签到,获得积分10
10秒前
11秒前
Laaaaaa完成签到 ,获得积分20
11秒前
xiaobai发布了新的文献求助10
12秒前
verdure发布了新的文献求助10
12秒前
晓晓来了完成签到,获得积分10
13秒前
13秒前
MADAO发布了新的文献求助200
13秒前
hope完成签到 ,获得积分10
14秒前
玛卡巴卡完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4967037
求助须知:如何正确求助?哪些是违规求助? 4225160
关于积分的说明 13158248
捐赠科研通 4011696
什么是DOI,文献DOI怎么找? 2195248
邀请新用户注册赠送积分活动 1208714
关于科研通互助平台的介绍 1122439