Crucial Semantic Classifier-based Adversarial Learning for Unsupervised Domain Adaptation

计算机科学 鉴别器 分类器(UML) 人工智能 对抗制 机器学习 域适应 学习迁移 电信 探测器
作者
Yumin Zhang,Yajun Gao,Hongliu Li,Ating Yin,Duzhen Zhang,Xiuyi Chen
标识
DOI:10.1109/ijcnn54540.2023.10191498
摘要

Unsupervised Domain Adaptation (UDA), which aims to explore the transferrable features from a well-labeled source domain to a related unlabeled target domain, has been widely progressed. Nevertheless, as one of the mainstream, existing adversarial-based methods neglect to filter the irrelevant semantic knowledge, hindering adaptation performance improvement. Besides, they require an additional domain discriminator that strives extractor to generate confused representations, but discrete designing may cause model collapse. To tackle the above issues, we propose Crucial Semantic Classifier-based Adversarial Learning (CSCAL), which pays more attention to crucial semantic knowledge transferring and leverages the classifier to implicitly play the role of domain discriminator without extra network designing. CSCAL effectively mitigates distribution shifts between the source and target domains from both intra- and inter-class perspectives. Specifically, in intra-class-wise alignment, a Paired-Level Discrepancy (PLD) is designed to transfer crucial semantic knowledge. Additionally, based on classifier predictions, a Nuclear Norm-based Discrepancy (NND) is formed that considers inter-class-wise information and improves the adaptation performance. Moreover, CSCAL can be effortlessly merged into different UDA methods as a regularizer and dramatically promote their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开富贵完成签到,获得积分10
刚刚
wangruize发布了新的文献求助10
1秒前
风中的怜阳完成签到,获得积分10
2秒前
2秒前
klandcy完成签到,获得积分10
2秒前
月亮打盹儿完成签到 ,获得积分10
3秒前
大模型应助90采纳,获得50
3秒前
hbkj完成签到,获得积分10
3秒前
完美世界应助可耐的青亦采纳,获得10
4秒前
wen发布了新的文献求助10
5秒前
书生发布了新的文献求助10
5秒前
hanchangcun完成签到,获得积分10
7秒前
9秒前
十二完成签到,获得积分10
11秒前
青树柠檬完成签到 ,获得积分10
12秒前
花畦种豆完成签到,获得积分10
12秒前
思源应助书生采纳,获得10
13秒前
wangruize完成签到,获得积分10
13秒前
fuchao完成签到,获得积分10
13秒前
追寻绿真关注了科研通微信公众号
14秒前
15秒前
Akim应助fuchao采纳,获得10
17秒前
17秒前
19秒前
19秒前
22秒前
zhyzzz发布了新的文献求助10
22秒前
科研通AI5应助11采纳,获得10
23秒前
24秒前
24秒前
25秒前
26秒前
27秒前
fuchao发布了新的文献求助10
28秒前
LLL完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
kyan发布了新的文献求助10
30秒前
zhyzzz完成签到,获得积分10
30秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844515
求助须知:如何正确求助?哪些是违规求助? 3386955
关于积分的说明 10546801
捐赠科研通 3107396
什么是DOI,文献DOI怎么找? 1711808
邀请新用户注册赠送积分活动 824172
科研通“疑难数据库(出版商)”最低求助积分说明 774573