清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Zero-Sharpen: A universal pansharpening method across satellites for reducing scale-variance gap via zero-shot variation

计算机科学 人工智能 正规化(语言学) 全色胶片 深度学习 锐化 算法 比例(比率) 模式识别(心理学) 图像分辨率 物理 量子力学
作者
Hebaixu Wang,Hao Zhang,Xin Tian,Jiayi Ma
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 102003-102003 被引量:2
标识
DOI:10.1016/j.inffus.2023.102003
摘要

Pansharpening is a technique that combines a high-resolution panchromatic image (HRPAN) and a low-resolution multi-spectral image (LRMS) to generate a high-resolution multi-spectral image (HRMS). Traditional methods perform sharpening based on given image pairs, but their performance is limited due to the employment of scale-varying linear mapping assumptions. Existing deep-learning-based methods can establish arbitrary non-linear sharpening functions based on large-scale training data. However, supervised methods suffer from scale-variance generalization for training on the simulated reduced resolution data, while unsupervised methods arise distortion for the absence of reference and introduction of inaccurate spectral observation assumptions. Besides, the generic satellite-specific learning (i.e. training and testing on the homologous satellite data) causes low generalization when processing the heterologous satellite data. To this end, we combine the advantages of deep learning and variational optimization, to propose a universal pansharpening method that can be applied across different satellites with reducing the scale variance, termed as Zero-Sharpen. On the one hand, we build image-pair-specific neural networks to extend the spatial mapping and spectral observation assumptions to the nonlinear space. These assumptions are incorporated as deep spatial prior and deep spectral observation prior for regularization, assisting variational models to iteratively adapt to the full-resolution scale. On the other hand, the variational optimization mechanism also promotes the optimization of deep networks so as to achieve the preservation of spectral and spatial information in a zero-shot learning manner. In doing so, our method can be easily available across different satellites. Extensive experiments demonstrate the superiority of our method over the state-of-the-art methods both qualitatively and quantitatively. Code is publicly available at https://github.com/Baixuzx7/ZeroSharpen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muriel完成签到,获得积分0
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Evian79167应助oleskarabach采纳,获得10
27秒前
Evian79167应助oleskarabach采纳,获得10
27秒前
Evian79167应助oleskarabach采纳,获得10
27秒前
Evian79167应助oleskarabach采纳,获得10
27秒前
Evian79167应助oleskarabach采纳,获得10
27秒前
yiyixt完成签到 ,获得积分10
28秒前
32秒前
39秒前
义气的书雁完成签到,获得积分10
56秒前
帅帅厅完成签到,获得积分20
1分钟前
1分钟前
帅帅厅发布了新的文献求助10
1分钟前
小马甲应助Anya采纳,获得10
2分钟前
2分钟前
满意访冬发布了新的文献求助10
2分钟前
沈惠映完成签到 ,获得积分10
2分钟前
ty完成签到 ,获得积分10
2分钟前
满意访冬完成签到,获得积分10
2分钟前
3分钟前
乐观的星月完成签到 ,获得积分10
3分钟前
Anya发布了新的文献求助10
3分钟前
靓丽的熠彤完成签到,获得积分10
3分钟前
Anya完成签到,获得积分10
3分钟前
GankhuyagJavzan完成签到,获得积分10
3分钟前
从容芮应助Alex采纳,获得200
4分钟前
小二郎应助嘟嘟采纳,获得10
4分钟前
无悔完成签到 ,获得积分10
4分钟前
从容芮应助Alex采纳,获得200
6分钟前
6分钟前
研友_85r1zL发布了新的文献求助10
6分钟前
小豆芽完成签到,获得积分10
6分钟前
6分钟前
鱿鱼起司发布了新的文献求助10
6分钟前
xiaoblue完成签到,获得积分10
7分钟前
lyj完成签到 ,获得积分10
7分钟前
在水一方完成签到,获得积分0
8分钟前
zhaoty完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4485426
求助须知:如何正确求助?哪些是违规求助? 3940930
关于积分的说明 12221102
捐赠科研通 3596697
什么是DOI,文献DOI怎么找? 1978070
邀请新用户注册赠送积分活动 1015058
科研通“疑难数据库(出版商)”最低求助积分说明 908288