Comparative Analysis of Improved YOLO v5 Models for Corrosion Detection in Coastal Environments

腐蚀 环境科学 海洋学 环境化学 地质学 化学 冶金 材料科学
作者
Qifeng Yu,Yudong Han,Xinjia Gao,Wuguang Lin,Yi Han
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 1754-1754 被引量:5
标识
DOI:10.3390/jmse12101754
摘要

Coastal areas face severe corrosion issues, posing significant risks and economic losses to equipment, personnel, and the environment. YOLO v5, known for its speed, accuracy, and ease of deployment, has been employed for the rapid detection and identification of marine corrosion. However, corrosion images often feature complex characteristics and high variability in detection targets, presenting significant challenges for YOLO v5 in recognizing and extracting corrosion features. To improve the detection performance of YOLO v5 for corrosion image features, this study investigates two enhanced models: EfficientViT-NWD-YOLO v5 and Gold-NWD-YOLO v5. These models specifically target improvements to the backbone and neck structures of YOLO v5, respectively. The performance of these models for corrosion detection is analyzed in comparison with both YOLO v5 and NWD-YOLO v5. The evaluation metrics including precision, recall, F1-score, Frames Per Second (FPS), pre-processing time, inference time, non-maximum suppression time (NMS), and confusion matrix were used to evaluate the detection performance. The results indicate that the Gold-NWD-YOLO v5 model shows significant improvements in precision, recall, F1-score, and accurate prediction probability. However, it also increases inference time and NMS time, and decreases FPS. This suggests that while the modified neck structure significantly enhances detection performance in corrosion images, it also increases computational overhead. On the other hand, the EfficientViT-NWD-YOLO v5 model shows slight improvements in precision, recall, F1-score, and accurate prediction probability. Notably, it significantly reduces inference and NMS time, and greatly improves FPS. This indicates that modifications to the backbone structure do not notably enhance corrosion detection performance but significantly improve detection speed. From the application perspective, YOLO v5 and NWD-YOLO v5 are suitable for routine corrosion detection applications. Gold-NWD-YOLO v5 is better suited for scenarios requiring high precision in corrosion detection, while EfficientViT-NWD-YOLO v5 is ideal for applications needing a balance between speed and accuracy. The findings can guide decision making for corrosion health monitoring for critical infrastructure in coastal areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
常常完成签到,获得积分10
1秒前
暴躁的奇异果完成签到,获得积分10
1秒前
柒柒牧马发布了新的文献求助10
2秒前
神奇宝贝完成签到,获得积分10
2秒前
2秒前
2秒前
小紫完成签到,获得积分10
3秒前
yuxiuru完成签到,获得积分10
4秒前
5秒前
哈哈哈完成签到,获得积分10
5秒前
华仔应助高高采纳,获得10
6秒前
大气元彤发布了新的文献求助10
6秒前
liahao发布了新的文献求助10
7秒前
星辰大海应助研友_8KXdRL采纳,获得10
7秒前
大哥小钊狗完成签到,获得积分0
7秒前
8秒前
SciGPT应助紫菜采纳,获得10
9秒前
李健应助小马宝莉子采纳,获得10
9秒前
逝止完成签到,获得积分10
9秒前
9秒前
小二郎应助yanghaohao采纳,获得10
10秒前
李萌萌完成签到 ,获得积分10
10秒前
10秒前
何老师发布了新的文献求助10
11秒前
KK完成签到,获得积分10
11秒前
CQD5201314完成签到,获得积分10
11秒前
脑洞疼应助wenruan采纳,获得10
12秒前
大个应助高挑的访枫采纳,获得30
12秒前
12秒前
13秒前
13秒前
CodeCraft应助不想采纳,获得10
14秒前
胡明月完成签到,获得积分20
14秒前
桐桐应助SCINEXUS采纳,获得30
14秒前
乌龙完成签到 ,获得积分10
14秒前
尽意发布了新的文献求助20
14秒前
15秒前
15秒前
16秒前
李爱国应助烂漫的猕猴桃采纳,获得10
16秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Beyond The Sentence: Discourse And Sentential Form 500
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4069379
求助须知:如何正确求助?哪些是违规求助? 3608238
关于积分的说明 11456270
捐赠科研通 3328734
什么是DOI,文献DOI怎么找? 1829967
邀请新用户注册赠送积分活动 899992
科研通“疑难数据库(出版商)”最低求助积分说明 819771