Enhancing overall performance of thermophotovoltaics via deep reinforcement learning-based optimization

热光电伏打 强化学习 钢筋 计算机科学 材料科学 人工智能 光电子学 复合材料 共发射极
作者
Shilv Yu,Zihe Chen,Wenhui Liao,Cheng Yuan,Bofeng Shang,Run Hu
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:136 (2) 被引量:5
标识
DOI:10.1063/5.0213211
摘要

Thermophotovoltaic (TPV) systems can be used to harvest thermal energy for thermoelectric conversion with much improved efficiency and power density compared with traditional photovoltaic systems. As the key component, selective emitters (SEs) can re-emit tailored thermal radiation for better matching with the absorption band of TPV cells. However, current designs of the SEs heavily rely on empirical design templates, particularly the metal-insulator-metal (MIM) structure, and lack of considering the overall performance of TPV systems and optimization efficiency. Here, we utilized a deep reinforcement learning (DRL) method to perform a comprehensive design of a 2D square-pattern metamaterial SE, with simultaneous optimization of material selections and structural parameters. In the DRL method, only the database of refractory materials with gradient refraction indexes needs to be prepared in advance, and the whole design roadmap will automatically output the SE with optimal Figure-of-Merit (FoM) efficiently. The optimal SE is composed of a novel material combination of TiO2, Si, and W substrate, with its thickness and structure precisely optimized. Its emissivity spectra match well with the external quantum efficiency curve of the GaSb cell. Consequently, the overall performance of TPV is significantly enhanced with an output power density of 5.78 W/cm2, an energy conversion efficiency of 38.26%, and a corresponding FoM of 2.21, surpassing most existing designs. The underlying physics of optimal SE is explained by the coupling effect of multiple resonance modes. This work advances the practical application potential of TPV systems and paves the way for addressing other multi-physics optimization problems and metamaterial designs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中冰香应助科研通管家采纳,获得10
刚刚
One应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
znzn完成签到,获得积分10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
wewe应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
风中冰香应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
arizaki7应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
大个应助无心的诗柳采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得20
1秒前
1秒前
乐乐应助Maestro_S采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
菲菲完成签到,获得积分10
2秒前
木木木完成签到,获得积分10
2秒前
ding完成签到,获得积分10
2秒前
科研通AI6应助mmichaell采纳,获得10
3秒前
3秒前
蛋妞儿完成签到,获得积分10
3秒前
一颗星发布了新的文献求助10
3秒前
3秒前
懦弱的若血完成签到,获得积分10
4秒前
4秒前
赘婿应助标致亦旋采纳,获得10
5秒前
单薄黑米发布了新的文献求助10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546244
求助须知:如何正确求助?哪些是违规求助? 4632131
关于积分的说明 14625170
捐赠科研通 4573805
什么是DOI,文献DOI怎么找? 2507814
邀请新用户注册赠送积分活动 1484466
关于科研通互助平台的介绍 1455707