已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Progressively-orthogonally-mapped EfficientNet for action recognition on time-range-Doppler signature

签名(拓扑) 计算机科学 航程(航空) 动作(物理) 多普勒效应 动作识别 模式识别(心理学) 人工智能 物理 数学 材料科学 几何学 班级(哲学) 天文 量子力学 复合材料
作者
Chenglin Yao,Jianfeng Ren,Ruibin Bai,Heshan Du,Jiang Liu,Xudong Jiang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124824-124824 被引量:3
标识
DOI:10.1016/j.eswa.2024.124824
摘要

Although 2D radar signal representations, such as spectrograms and range-Doppler maps have been widely used for target recognition, 3D time-range-Doppler (TRD) has been less studied, partially because of the difficulties in extracting features from the TRD representation, i.e., shallow 3D neural networks have limited discriminant power, but repeatedly applying 3D convolutions will lead to an oversized 3D network. A hybrid 3D–2D network architecture, Progressively-Orthogonally-Mapped EfficientNet (POMEN), is proposed to address these challenges. More specifically, the proposed POMEN utilizes 3D convolutions in the earlier stages to capture the information embedded in the sparse 3D TRD representation, and to avoid the oversized feature map caused by excessively applying 3D convolutions, we propose to progressively map the 3D features into three sets of 2D features corresponding to the range-time signature, range-Doppler map and time-Doppler signature (spectrogram), respectively. Subsequently, 2D EfficientNet blocks were designed to extract discriminant information from the three sets of 2D feature maps. This hybrid 3D–2D network design effectively extracts features from the 3D TRD representation, thereby avoiding oversized features from full-sized 3D networks and the information loss of 2D networks on 2D representations. Finally, a homogeneous gated fusion network was designed to fuse the three sets of 2D features. The proposed method was evaluated on the UGRS, MIMOGR, and mmWRWD datasets. The experimental results for all datasets demonstrate that the proposed POMEN significantly and consistently outperforms the state-of-the-art models in both 2D and 3D representations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
木子发布了新的文献求助10
1秒前
必发文章完成签到,获得积分10
3秒前
5秒前
huangchenxi发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
8秒前
lijinbei发布了新的文献求助10
12秒前
英姑应助Mancy采纳,获得10
12秒前
cbq关注了科研通微信公众号
12秒前
maomao发布了新的文献求助10
12秒前
益达男友发布了新的文献求助10
13秒前
binyh完成签到,获得积分10
14秒前
你求我一下完成签到,获得积分10
15秒前
17秒前
18秒前
18秒前
19秒前
善学以致用应助WJY采纳,获得20
19秒前
19秒前
19秒前
binyh发布了新的文献求助10
20秒前
泡泡泡芙发布了新的文献求助20
22秒前
传奇3应助huangchenxi采纳,获得10
23秒前
23秒前
SciGPT应助虎啸天123采纳,获得10
24秒前
mtt应助文龙采纳,获得10
25秒前
我是猪发布了新的文献求助20
25秒前
HXY发布了新的文献求助20
25秒前
幽魂发布了新的文献求助10
26秒前
英俊的铭应助一只小白采纳,获得10
27秒前
27秒前
27秒前
深情安青应助池木采纳,获得10
28秒前
28秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265599
求助须知:如何正确求助?哪些是违规求助? 4425560
关于积分的说明 13776696
捐赠科研通 4301183
什么是DOI,文献DOI怎么找? 2360127
邀请新用户注册赠送积分活动 1356156
关于科研通互助平台的介绍 1317525