An optimal multivariate-stratification geographical detector model for revealing the impact of multi-factor combinations on the dependent variable

多元统计 地理 分层(种子) 变量(数学) 多元分析 统计 环境科学 计量经济学 数学 生物 休眠 植物 种子休眠 发芽 数学分析
作者
Yingfeng Guo,Zhifeng Wu,Zihao Zheng,Xiaohang Li
出处
期刊:Giscience & Remote Sensing [Taylor & Francis]
卷期号:61 (1) 被引量:9
标识
DOI:10.1080/15481603.2024.2422941
摘要

Spatial heterogeneity (SH), known as the second law of geography, has been a topic of extensive research. One common approach to analyzing SH involves comparing variances between and within strata to assess the impact of independent variables on the dependent variable. This method, known as spatial stratified heterogeneity (SSH) analysis, is often performed using the geographical detector model. Over time, several optimized versions of geographical detectors have emerged, focusing on discretizing single or dual variables. However, methods for discretizing three or more variables are still limited to the interaction detector, with research on spatial scale effects mainly focused on single factors. To overcome these limitations, an optimal multivariate-stratification geographical detector (OMGD) model has been developed. This model includes two additional modules: factor discretization optimization and scale detector. Fine-tuning factor discretization involves using five univariate and five cluster-based stratification methods to automatically explore the optimal discretization scheme for single factors or multi-factor combinations based on the Geodetector q statistics. The scale detector can then iterate through various spatial scales to identify the optimal spatial scale for SSH analysis. Furthermore, the developed OMGD model has been tested with multiple case datasets to validate its applicability and robustness. The findings demonstrate that the OMGD model can effectively extract the main attributes of single factors and multi-factor combinations, providing a better explanation for geographical phenomena. It can also automatically determine the best spatial scale for SSH analysis, thereby enhancing the overall capability of conducting SSH analysis with the geographical detector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
zzj发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
a雪橙发布了新的文献求助10
3秒前
4秒前
苽峰发布了新的文献求助10
5秒前
时光漫步123完成签到,获得积分10
5秒前
5秒前
naturehome完成签到,获得积分10
6秒前
阳光依秋完成签到,获得积分20
6秒前
在水一方应助苽峰采纳,获得10
9秒前
爱扎丸子头的红红完成签到 ,获得积分10
11秒前
13秒前
迷路的之云完成签到,获得积分10
13秒前
丰富的大白菜真实的钥匙完成签到,获得积分10
14秒前
333发布了新的文献求助10
15秒前
Jiayi完成签到 ,获得积分10
16秒前
16秒前
staev发布了新的文献求助10
16秒前
zhangxin发布了新的文献求助10
17秒前
华仔应助FY采纳,获得10
18秒前
18秒前
yuxiazhengye发布了新的文献求助10
18秒前
王博龙完成签到 ,获得积分10
18秒前
19秒前
清脆保温杯完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
hahada完成签到,获得积分10
20秒前
楚眠完成签到,获得积分10
21秒前
xynlxyhzg发布了新的文献求助10
22秒前
24秒前
Lin完成签到,获得积分10
26秒前
薯片完成签到,获得积分20
26秒前
打打应助任性的天晴采纳,获得10
27秒前
科研通AI6应助fafamimireredo采纳,获得10
27秒前
童年的秋千完成签到,获得积分10
28秒前
sjz发布了新的文献求助10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011950
求助须知:如何正确求助?哪些是违规求助? 4253264
关于积分的说明 13253336
捐赠科研通 4055969
什么是DOI,文献DOI怎么找? 2218515
邀请新用户注册赠送积分活动 1228110
关于科研通互助平台的介绍 1150405