A Dynamic Weights-Based Wavelet Attention Neural Network for Defect Detection

计算机科学 特征(语言学) 人工智能 小波 噪音(视频) 模式识别(心理学) 滤波器(信号处理) 卷积(计算机科学) 人工神经网络 代表(政治) 计算机视觉 图像(数学) 政治 政治学 哲学 语言学 法学
作者
Jinhai Liu,He Zhao,Zhaolin Chen,Qiannan Wang,Xiangkai Shen,Huaguang Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 16211-16221 被引量:15
标识
DOI:10.1109/tnnls.2023.3292512
摘要

Automatic defect detection plays an important role in industrial production. Deep learning-based defect detection methods have achieved promising results. However, there are still two challenges in the current defect detection methods: 1) high-precision detection of weak defects is limited and 2) it is difficult for current defect detection methods to achieve satisfactory results dealing with strong background noise. This article proposes a dynamic weights-based wavelet attention neural network (DWWA-Net) to address these issues, which can enhance the feature representation of defects and simultaneously denoise the image, thereby improving the detection accuracy of weak defects and defects under strong background noise. First, wavelet neural networks and dynamic wavelet convolution networks (DWCNets) are presented, which can effectively filter background noise and improve model convergence. Second, a multiview attention module is designed, which can direct the network attention toward potential targets, thereby guaranteeing the accuracy for detecting weak defects. Finally, a feature feedback module is proposed, which can enhance the feature information of defects to further improve the weak defect detection accuracy. The DWWA-Net can be used for defect detection in multiple industrial fields. Experiment results illustrate that the proposed method outperforms the state-of-the-art methods (mean precision: GC10-DET: 6.0%; NEU: 4.3%). The code is made in https://github.com/781458112/DWWA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalahei完成签到,获得积分10
刚刚
sdl发布了新的文献求助10
1秒前
2秒前
NMZN完成签到,获得积分10
2秒前
海带关注了科研通微信公众号
3秒前
tzjz_zrz完成签到,获得积分10
3秒前
lyn完成签到,获得积分10
3秒前
无花果应助junsizzz采纳,获得10
3秒前
叶叶子完成签到,获得积分10
3秒前
4秒前
鲤鱼小蕾发布了新的文献求助30
5秒前
找文献完成签到 ,获得积分10
5秒前
小蘑菇应助雷家采纳,获得10
5秒前
6秒前
灵巧的大开完成签到 ,获得积分10
6秒前
Annie完成签到,获得积分10
6秒前
6秒前
鱼圆杂铺完成签到,获得积分10
7秒前
7秒前
超级李包包完成签到,获得积分10
8秒前
9秒前
9秒前
可可发布了新的文献求助10
9秒前
韦涔完成签到,获得积分10
10秒前
淡定的健柏完成签到 ,获得积分10
10秒前
George完成签到,获得积分10
10秒前
sumugeng完成签到,获得积分10
10秒前
Iron_five完成签到 ,获得积分10
11秒前
Gu完成签到 ,获得积分10
11秒前
斯文败类应助彩虹大侠采纳,获得10
11秒前
iu发布了新的文献求助10
11秒前
CHANG完成签到 ,获得积分10
12秒前
唐同学发布了新的文献求助10
13秒前
冷静的奇迹完成签到,获得积分10
13秒前
倩倩发布了新的文献求助10
13秒前
JamesPei应助chai采纳,获得10
13秒前
13秒前
魔幻嚓茶完成签到,获得积分10
14秒前
Nashe完成签到,获得积分10
14秒前
LYF完成签到 ,获得积分10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383312
关于积分的说明 10529152
捐赠科研通 3103372
什么是DOI,文献DOI怎么找? 1709237
邀请新用户注册赠送积分活动 823008
科研通“疑难数据库(出版商)”最低求助积分说明 773764