Research on Sports Dance Training and Teaching in Modern Colleges and Universities Combined with Deep Learning

舞蹈 培训(气象学) 舞蹈教育 数学教育 心理学 医学教育 教育学 视觉艺术 艺术 医学 地理 气象学
作者
Jie Jiao
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:10 (1)
标识
DOI:10.2478/amns-2025-0602
摘要

Abstract Deep learning technology, one of the key technologies in the field of artificial intelligence, has shown a strong potential for application in many fields. The purpose of this paper is to explore the application of deep learning technology in the training and teaching of sports dance in modern colleges and universities, with a view to improving training efficiency and teaching quality. The OpenPose algorithm is used to realize the posture estimation of sports dance trainers, and the sports dance movement recognition model based on TAR-DL is constructed, and then the sports dance movement evaluation method based on the improved DTW algorithm is proposed. The sports dance movement recognition rate of the TAR-DL model is as high as 99.72%, which is significantly better than that of other 3D recognition methods. Meanwhile, the recognition rate of this paper’s method for the six basic sports dance movements is between 95% and 99%, which is better than the recognition effect. Compared with the DTW algorithm, the Improved-DTW algorithm improves the accuracy by 3.14%, while reducing the time consumed by 0.37ms, which proves the effectiveness of the algorithm improvement strategy designed in this paper. In addition, the evaluation results based on the improved DTW proposed in this paper are closer to those of the professional sport dancer teacher, which fully proves the superiority and effectiveness of the Improved-DTW algorithm in the sport dance movement recognition task, and it can be used in the movement evaluation task of sport dance training and teaching in colleges and universities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助NQ12356797采纳,获得10
2秒前
思源应助唐俊杰采纳,获得10
3秒前
4秒前
5秒前
可爱的函函应助chenc采纳,获得30
5秒前
orixero应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
嘿嘿应助momochichu采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
小透明应助科研通管家采纳,获得30
8秒前
8秒前
nn应助科研通管家采纳,获得10
8秒前
nn应助科研通管家采纳,获得10
8秒前
nn应助科研通管家采纳,获得30
8秒前
376应助科研通管家采纳,获得10
8秒前
认真的白易完成签到,获得积分10
8秒前
8秒前
10秒前
朴实涵山完成签到 ,获得积分10
10秒前
热情爆米花完成签到 ,获得积分10
12秒前
光亮的莆完成签到,获得积分10
13秒前
张丹兰发布了新的文献求助10
14秒前
14秒前
fiife应助奋斗的桐采纳,获得10
15秒前
张姣姣发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
徐反宁发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
万能图书馆应助宗听露采纳,获得10
22秒前
23秒前
23秒前
小蘑菇应助激动的xx采纳,获得10
24秒前
圆圆脸完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595296
求助须知:如何正确求助?哪些是违规求助? 4680618
关于积分的说明 14816520
捐赠科研通 4649353
什么是DOI,文献DOI怎么找? 2535364
邀请新用户注册赠送积分活动 1503296
关于科研通互助平台的介绍 1469562