Regulation of PV interneuron plasticity by neuropeptide-encoding genes

中间神经元 神经科学 新皮层 抑制性突触后电位 帕尔瓦布明 生物 神经周围网 兴奋性突触后电位 突触可塑性 光遗传学 神经可塑性 遗传学 受体
作者
Martijn Selten,C. Bernard,Diptendu Mukherjee,Fursham Hamid,Alicia Hanusz-Godoy,Fazal Oozeer,Christoph T. Zimmer,Oscar Marı́n
出处
期刊:Nature [Nature Portfolio]
标识
DOI:10.1038/s41586-025-08933-z
摘要

Neuronal activity must be regulated in a narrow permissive band for the proper operation of neural networks. Changes in synaptic connectivity and network activity-for example, during learning-might disturb this balance, eliciting compensatory mechanisms to maintain network function1-3. In the neocortex, excitatory pyramidal cells and inhibitory interneurons exhibit robust forms of stabilizing plasticity. However, although neuronal plasticity has been thoroughly studied in pyramidal cells4-8, little is known about how interneurons adapt to persistent changes in their activity. Here we describe a critical cellular process through which cortical parvalbumin-expressing (PV+) interneurons adapt to changes in their activity levels. We found that changes in the activity of individual PV+ interneurons drive bidirectional compensatory adjustments of the number and strength of inhibitory synapses received by these cells, specifically from other PV+ interneurons. High-throughput profiling of ribosome-associated mRNA revealed that increasing the activity of a PV+ interneuron leads to upregulation of two genes encoding multiple secreted neuropeptides: Vgf and Scg2. Functional experiments demonstrated that VGF is critically required for the activity-dependent scaling of inhibitory PV+ synapses onto PV+ interneurons. Our findings reveal an instructive role for neuropeptide-encoding genes in regulating synaptic connections among PV+ interneurons in the adult mouse neocortex.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助仲侣弥月采纳,获得10
1秒前
1秒前
2秒前
3秒前
喵喵喵发布了新的文献求助10
3秒前
Dean完成签到,获得积分10
4秒前
奥黛丽发布了新的文献求助10
4秒前
4秒前
5秒前
热泪盈眶完成签到,获得积分10
5秒前
Lyuhng+1完成签到 ,获得积分10
6秒前
7秒前
fly完成签到,获得积分10
8秒前
付冀川发布了新的文献求助10
8秒前
山下梅子酒完成签到 ,获得积分10
9秒前
大橘发布了新的文献求助10
10秒前
11秒前
12秒前
黄金矿工发布了新的文献求助10
12秒前
所所应助gustavo采纳,获得10
13秒前
zhang完成签到,获得积分10
13秒前
田様应助安安采纳,获得10
15秒前
付冀川完成签到,获得积分10
16秒前
16秒前
16秒前
清秀的鼠标完成签到,获得积分10
17秒前
阿豪发布了新的文献求助10
17秒前
18秒前
仲侣弥月完成签到,获得积分10
18秒前
海陵吹风鸡完成签到,获得积分10
18秒前
19秒前
19秒前
科研通AI5应助清秀的鼠标采纳,获得10
21秒前
仲侣弥月发布了新的文献求助10
21秒前
喵喵喵完成签到,获得积分10
22秒前
22秒前
22秒前
xian林完成签到,获得积分10
22秒前
andy发布了新的文献求助20
23秒前
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814644
求助须知:如何正确求助?哪些是违规求助? 3358727
关于积分的说明 10397217
捐赠科研通 3076119
什么是DOI,文献DOI怎么找? 1689701
邀请新用户注册赠送积分活动 813195
科研通“疑难数据库(出版商)”最低求助积分说明 767532