Machine Learning-Based Plasma Protein Risk Score Improves Atrial Fibrillation Prediction Over Clinical and Genomic Models

生命银行 心房颤动 接收机工作特性 医学 内科学 队列 流行病学 置信区间 弗雷明翰风险评分 风险评估 曲线下面积 心脏病学 生物信息学 计算机科学 疾病 生物 计算机安全
作者
Min Seo Kim,Shaan Khurshid,Shinwan Kany,Lu‐Chen Weng,Sarah Urbut,Carolina Roselli,Leonoor F. J. M. Wijdeveld,Sean J. Jurgens,Joel Rämö,Patrick T. Ellinor,Akl C. Fahed
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:18 (4): e004943-e004943 被引量:3
标识
DOI:10.1161/circgen.124.004943
摘要

BACKGROUND: Clinical factors discriminate incident atrial fibrillation (AF) risk with moderate accuracy, with only modest improvement after incorporation of polygenic risk scores. Whether emerging large-scale proteomic profiling can augment AF risk estimation is unknown. METHODS: In the UK Biobank cohort, we derived and validated a machine learning model to predict incident AF risk using serum proteins (Pro-AF). We compared Pro-AF to a validated clinical risk score (Cohorts for Heart and Aging Research in Genomic Epidemiology-Atrial Fibrillation, CHARGE-AF) and an AF polygenic risk score. Models were evaluated in a multiply resampled test set from nested cross-validation (internal test set), and a sample of UK Biobank participants separate from model development (hold-out test set). Metrics included discrimination of 5-year incident AF using time-dependent area under the receiver operating characteristic curve and net reclassification. RESULTS: Trained in 32 631 UK Biobank participants, Pro-AF predicts incident AF using 121 protein levels (out of 2911 protein analytes). When assessed in the internal test set comprising 30 632 individuals (mean age 57±8 years, 54% women, 2045 AF events) and hold-out test set comprising 13 998 individuals (mean age 57±8 years, 54% women, 870 AF events), discrimination of 5-year incident AF was highest using Pro-AF (area under the receiver operating characteristic curve internal: 0.761 [95% CI, 0.745–0.780], hold-out: 0.763 [0.734–0.784]), followed by CHARGE-AF (0.719 [0.700–0.737]; 0.702 [0.668–0.730]) and the polygenic risk score (0.686 [0.668–0.702]; 0.682 [0.660–0.710]). AF risk estimates were well-calibrated, and the addition of Pro-AF led to substantial continuous net reclassification improvement over CHARGE-AF (eg, internal test set 0.410 [0.330–0.492]). A simplified Pro-AF including only the 5 most influential proteins (NT-proBNP [N-terminal pro-brain natriuretic peptide], EDA2R [ectodysplasin A2 receptor], NPPB [B-type natriuretic peptide], BCAN [brevican core protein], and GDF15 [growth/differentiation factor 15]), retained favorable discriminative value (area under the receiver operating characteristic curve internal: 0.750 [0.733–0.768]; hold-out: 0.759 [0.732–0.790]). CONCLUSIONS: A machine learning-based protein score discriminates 5-year incident AF risk favorably compared with clinical and genetic risk factors. Large-scale proteomic analysis may assist in the prioritization of individuals at risk for AF for screening and related preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助苏筱采纳,获得10
刚刚
幻翎完成签到,获得积分0
刚刚
星星发布了新的文献求助30
刚刚
魔幻的电脑完成签到,获得积分20
1秒前
眼睛大的可乐完成签到,获得积分10
1秒前
qxs完成签到,获得积分10
2秒前
ximu完成签到,获得积分10
2秒前
顺顺尼完成签到,获得积分20
2秒前
2秒前
2号发布了新的文献求助10
3秒前
3秒前
3秒前
liam发布了新的文献求助10
3秒前
JamesPei应助酷炫书芹采纳,获得10
4秒前
喜悦冰烟发布了新的文献求助10
4秒前
bubu完成签到,获得积分10
4秒前
多多完成签到,获得积分10
4秒前
幻翎发布了新的文献求助10
5秒前
李健的小迷弟应助xiw采纳,获得10
5秒前
5秒前
李健应助大王叫我来巡山采纳,获得10
5秒前
6秒前
完美世界应助番茄采纳,获得10
6秒前
Zhoujian完成签到,获得积分20
7秒前
慕青应助yuze_22采纳,获得10
9秒前
典雅的绿凝完成签到,获得积分10
9秒前
李健应助摇粒绒采纳,获得10
9秒前
FAYE完成签到,获得积分20
9秒前
刘震发布了新的文献求助20
9秒前
量子星尘发布了新的文献求助10
9秒前
情怀应助小林采纳,获得10
10秒前
10秒前
White.K完成签到,获得积分10
10秒前
小椰发布了新的文献求助10
10秒前
直率季节发布了新的文献求助30
10秒前
00hello00发布了新的文献求助10
11秒前
12秒前
跑快点完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932