Novel AI applications in systematic review: GPT-4 assisted data extraction, analysis, review of bias

数据提取 一致性 可比性 计算机科学 荟萃分析 系统回顾 统计 数据挖掘 人工智能 医学 梅德林 数学 内科学 生物 生物化学 组合数学
作者
Jin K. Kim,Michael Chua,Tian Li,Mandy Rickard,Armando J. Lorenzo
出处
期刊:BMJ evidence-based medicine [BMJ]
卷期号:30 (5): bmjebm-2024 被引量:2
标识
DOI:10.1136/bmjebm-2024-113066
摘要

Objective To assess custom GPT-4 performance in extracting and evaluating data from medical literature to assist in the systematic review (SR) process. Design A proof-of-concept comparative study was conducted to assess the accuracy and precision of custom GPT-4 models against human-performed reviews of randomised controlled trials (RCTs). Setting Four custom GPT-4 models were developed, each specialising in one of the following areas: (1) extraction of study characteristics, (2) extraction of outcomes, (3) extraction of bias assessment domains and (4) evaluation of risk of bias using results from the third GPT-4 model. Model outputs were compared against data from four SRs conducted by human authors. The evaluation focused on accuracy in data extraction, precision in replicating outcomes and agreement levels in risk of bias assessments. Participants Among four SRs chosen, 43 studies were retrieved for data extraction evaluation. Additionally, 17 RCTs were selected for comparison of risk of bias assessments, where both human comparator SRs and an analogous SR provided assessments for comparison. Intervention Custom GPT-4 models were deployed to extract data and evaluate risk of bias from selected studies, and their outputs were compared to those generated by human reviewers. Main outcome measures Concordance rates between GPT-4 outputs and human-performed SRs in data extraction, effect size comparability and inter/intra-rater agreement in risk of bias assessments. Results When comparing the automatically extracted data to the first table of study characteristics from the published review, GPT-4 showed 88.6% concordance with the original review, with <5% discrepancies due to inaccuracies or omissions. It exceeded human accuracy in 2.5% of instances. Study outcomes were extracted and pooling of results showed comparable effect sizes to comparator SRs. A review of bias assessment using GPT-4 showed fair-moderate but significant intra-rater agreement (ICC=0.518, p<0.001) and inter-rater agreements between human comparator SR (weighted kappa=0.237) and the analogous SR (weighted kappa=0.296). In contrast, there was a poor agreement between the two human-performed SRs (weighted kappa=0.094). Conclusion Customized GPT-4 models perform well in extracting precise data from medical literature with potential for utilization in review of bias. While the evaluated tasks are simpler than the broader range of SR methodologies, they provide an important initial assessment of GPT-4's capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sira完成签到,获得积分10
1秒前
迷路千青完成签到,获得积分10
3秒前
3秒前
trojan621发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
超级白玉发布了新的文献求助10
9秒前
苗涓完成签到 ,获得积分10
9秒前
Sirius完成签到,获得积分10
9秒前
wanci应助JIANGNANYAN采纳,获得10
9秒前
映冬完成签到 ,获得积分10
10秒前
记录吐吐完成签到,获得积分10
10秒前
小青椒应助Babe1934采纳,获得10
10秒前
11秒前
传奇3应助单身的忆南采纳,获得10
11秒前
orixero应助无白开采纳,获得10
11秒前
11秒前
两只老虎爱跳舞完成签到,获得积分10
12秒前
科研通AI6应助猫橘汽水采纳,获得10
13秒前
记录吐吐发布了新的文献求助10
13秒前
13秒前
懵懂的依秋完成签到 ,获得积分10
14秒前
蓓蓓0303发布了新的文献求助10
14秒前
14秒前
淡然羊发布了新的文献求助10
17秒前
sterkiller发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
Naranja发布了新的文献求助10
18秒前
小二郎应助Sira采纳,获得10
19秒前
Unlung完成签到,获得积分10
19秒前
qi发布了新的文献求助10
20秒前
trojan621完成签到,获得积分10
23秒前
23秒前
小二郎应助zzt采纳,获得10
23秒前
Babe1934完成签到,获得积分10
24秒前
24秒前
25秒前
zhangyun之完成签到,获得积分10
26秒前
dede发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648687
求助须知:如何正确求助?哪些是违规求助? 4775962
关于积分的说明 15044928
捐赠科研通 4807596
什么是DOI,文献DOI怎么找? 2570889
邀请新用户注册赠送积分活动 1527662
关于科研通互助平台的介绍 1486570