Application of Laser Spectroscopy and Machine Learning for Diagnostics of Uncontrolled Type 2 Diabetes

激光诱导击穿光谱 随机森林 主成分分析 人工智能 激光器 光谱学 分类器(UML) 精确性和召回率 计算机科学 材料科学 光学 物理 量子力学
作者
Imran Rehan,K. Rehan,Sabiha Sultana,Mujeeb Ur Rehman
出处
期刊:Applied Spectroscopy [SAGE Publishing]
标识
DOI:10.1177/00037028251334383
摘要

Diabetes, a chronic metabolic disorder affecting millions worldwide, presents a persistent need for reliable and non-invasive diagnostic techniques. Here, we suggest a highly effective approach for differentiating between fingernails from diabetic individuals and those from healthy controls using laser-induced breakdown spectroscopy (LIBS). The excitation source employed was a Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser emitting light with a wavelength of 1064 nm. The initial differentiation between individuals with and without diabetes was achieved by applying principal component analysis (PCA) to LIBS spectral data, which was then incorporated into a novel machine-learning model. The classification model designed for a non-invasive system included random forest (RF), an extreme learning machine (ELM) classifier, and a hybrid classification model incorporating cross-validation techniques to evaluate the outcomes. The algorithm analyses the complete spectrum of both healthy and diseased samples, categorizing them according to differences in LIBS spectral intensity. The classification performance of the model was assessed using a k -fold cross-validation method. Seven parameters, i.e., specificity, sensitivity, area under curve (AUC), accuracy, precision, recall, and F-score, were used to evaluate the model's overall performance. The findings affirmed that the suggested non-invasive model could predict diabetic diseases with an accuracy of 95%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助zzx采纳,获得10
1秒前
小蘑菇应助cosmtraveller采纳,获得10
2秒前
科目三应助han采纳,获得10
2秒前
诺颜爱完成签到,获得积分20
5秒前
完美世界应助sy采纳,获得10
5秒前
6秒前
月光入梦发布了新的文献求助10
8秒前
爱吃香菜完成签到 ,获得积分10
9秒前
诺颜爱发布了新的文献求助10
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
飞天817应助科研通管家采纳,获得10
12秒前
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
mimosal发布了新的文献求助10
13秒前
13秒前
JamesPei应助LUK_采纳,获得10
13秒前
orixero应助何求采纳,获得10
15秒前
qyn1234566应助爱吃西瓜的杜采纳,获得10
16秒前
16秒前
端庄卿完成签到 ,获得积分10
16秒前
fufu发布了新的文献求助10
17秒前
莉拉完成签到,获得积分10
18秒前
susu完成签到,获得积分10
18秒前
zho应助我有一件隐形斗篷采纳,获得10
18秒前
俏皮白云发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
斯可完成签到,获得积分10
20秒前
mao发布了新的文献求助10
21秒前
22秒前
哒哒哒完成签到,获得积分10
23秒前
23秒前
CodeCraft应助Likx采纳,获得10
23秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering 200
How We Sold Our Future: The Failure to Fight Climate Change 200
Lab Dog: What Global Science Owes American Beagles 200
Governing Marine Living Resources in the Polar Regions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824557
求助须知:如何正确求助?哪些是违规求助? 3366868
关于积分的说明 10443148
捐赠科研通 3086183
什么是DOI,文献DOI怎么找? 1697764
邀请新用户注册赠送积分活动 816497
科研通“疑难数据库(出版商)”最低求助积分说明 769729