Predicting Large‐Scale Systematic Missing Pipe Attributes in Water Distribution Networks

作者
Jason Poff,Kirk Bonney,Mikhail Chester,Katherine A. Klise,Samuel J. Rivera
出处
期刊:Water Resources Research [Wiley]
卷期号:61 (12)
标识
DOI:10.1029/2025wr040281
摘要

Abstract Water distribution network (WDN) models are an essential tool used by water utilities for hydraulic analysis. Unfortunately, missing data and insufficient resources often make creating and maintaining these models unfeasible. Existing methods to address missing pipe properties, like sequential imputation for missing values and reconstruction using graph metrics, are designed to accommodate random patterns of missing information and require a significant percentage of the system's attributes to be known. However, these data completeness assumptions do not always align with real‐world scenarios where large sections of the WDN model have missing data. To address this challenge, this study proposes a data‐driven approach for estimating pipe diameter when considering different spatial patterns and degrees of data completeness (i.e., 0%–90%). Using data from 16 WDNs in Kentucky, this study compares the use of machine learning (ML) using topological and geospatial features against an existing deterministic approach. Results demonstrate that WDN models with pipe diameters predicted by the proposed ML method had comparable hydraulic performance to the ground truth models. Moreover, results showed that ML method performance varies between WDNs of differing topological classification. Insights from this study help advance the ability to leverage partial data to create and maintain WDN models amid uncertainty and inadequate resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒梅发布了新的文献求助10
刚刚
1秒前
陈陈发布了新的文献求助10
1秒前
1秒前
yaoyinlin发布了新的文献求助10
3秒前
spc68应助满意的丹蝶采纳,获得10
4秒前
无误发布了新的文献求助10
5秒前
6秒前
liao应助hhh采纳,获得10
7秒前
万能图书馆应助土豆采纳,获得10
7秒前
7秒前
久伴完成签到 ,获得积分10
7秒前
灵巧冷菱完成签到,获得积分10
7秒前
7秒前
顺利秋灵发布了新的文献求助10
8秒前
NexusExplorer应助Zirong采纳,获得30
9秒前
9秒前
ZeKaWang应助爱撒娇的文博采纳,获得10
10秒前
大个应助BroaI采纳,获得10
10秒前
10秒前
Mario完成签到,获得积分10
10秒前
10秒前
11秒前
gishwx完成签到,获得积分20
12秒前
顾矜应助yaoyinlin采纳,获得10
12秒前
转转完成签到,获得积分20
13秒前
14秒前
风中天抒发布了新的文献求助10
14秒前
鹿lu完成签到 ,获得积分10
14秒前
撒旦asd发布了新的文献求助10
15秒前
15秒前
顺利秋灵完成签到,获得积分20
15秒前
15秒前
wangyan发布了新的文献求助10
16秒前
17秒前
17秒前
转转发布了新的文献求助50
17秒前
张杰发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684548
求助须知:如何正确求助?哪些是违规求助? 5037168
关于积分的说明 15184425
捐赠科研通 4843794
什么是DOI,文献DOI怎么找? 2596923
邀请新用户注册赠送积分活动 1549534
关于科研通互助平台的介绍 1508029