YOLOv5s-CEDB: A robust and efficiency Camellia oleifera fruit detection algorithm in complex natural scenes

油茶 山茶花 人工智能 算法 自然(考古学) 计算机科学 园艺 生物 古生物学
作者
A. W. Zhu,Ruirui Zhang,Linhuan Zhang,Tongchuan Yi,Liwan Wang,Danzhu Zhang,Liping Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:221: 108984-108984
标识
DOI:10.1016/j.compag.2024.108984
摘要

To solve the problem of poor recognition accuracy caused by various colors, uneven distribution, and occlusion by branches and leaves of Camellia oleifera fruits under natural growth conditions, this study proposes an improved deep learning network, YOLOv5s-CEDB, for Camellia oleifera fruit detection based on YOLOv5s. Coordinate Attention Mechanism (CoordAtt), Deformable Convolution (DConv), and Explicit Visual Center (EVC) are introduced to enhance the network's local and global feature extraction performance. To improve the detection performance for small and dense targets, the feature fusion module of the network was replaced with the designed light-bidirectional feature pyramid (light-BiFPN) structure. GhostConv was used to reduce the parameters and inference speed of the structure. A dataset with different light conditions, colors, and density levels of Camellia oleifera fruits was established, and performance evaluation experiments were conducted. Experimental results showed that the mean Average Precision (mAP) and F1-score of the designed YOLOv5s-CEDB network reached 91.4 % and 89.6 %, respectively, which were 2.6 % and 3.6 % higher than those of the original YOLOv5s model, respectively, and the influencing frame rate arrived at 37.6 FPS. Under different colors, distribution densities, occlusion scenarios, and light intensities, the detection accuracy of the YOLOv5s-CEDB network model was significantly better than those of the YOLOv5s, YOLOv8s and Faster-RCNN networks. It was verified that the proposed YOLOv5s-CEDB network could significantly improve the accuracy and stability of Camellia oleifera fruit detection, satisfying the requirements of yield estimation and intelligent harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘雨森完成签到 ,获得积分10
刚刚
刚刚
乾清宫喝奶茶完成签到,获得积分10
刚刚
fusheng完成签到 ,获得积分10
刚刚
热情曲奇完成签到,获得积分10
2秒前
shadow完成签到,获得积分10
4秒前
王佳亮完成签到,获得积分10
4秒前
浮生完成签到 ,获得积分10
5秒前
震动的听安完成签到,获得积分10
5秒前
6秒前
6秒前
半夏完成签到 ,获得积分10
7秒前
Yang完成签到 ,获得积分10
9秒前
星辰大海应助zyc采纳,获得10
9秒前
zzz完成签到,获得积分10
11秒前
11秒前
14秒前
15秒前
李健应助wisdom采纳,获得10
15秒前
lv关注了科研通微信公众号
15秒前
lalali完成签到,获得积分10
17秒前
大气的莆完成签到,获得积分10
19秒前
心悦臣服发布了新的文献求助10
19秒前
iwaking完成签到,获得积分10
19秒前
yyq发布了新的文献求助20
19秒前
大壮完成签到 ,获得积分10
21秒前
21秒前
科研欢完成签到 ,获得积分10
21秒前
生物科研小白完成签到 ,获得积分10
22秒前
silsotiscolor完成签到,获得积分10
23秒前
24秒前
车宇完成签到 ,获得积分10
26秒前
熊泰山完成签到 ,获得积分10
26秒前
28秒前
28秒前
32秒前
32秒前
32秒前
英俊的铭应助米酒汤圆采纳,获得10
33秒前
NexusExplorer应助复杂的天玉采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4446375
求助须知:如何正确求助?哪些是违规求助? 3916133
关于积分的说明 12156976
捐赠科研通 3565258
什么是DOI,文献DOI怎么找? 1957596
邀请新用户注册赠送积分活动 997211
科研通“疑难数据库(出版商)”最低求助积分说明 892495