MPSA: Multi-Position Supervised Soft Attention-based convolutional neural network for histopathological image classification

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 图像(数学) 人工神经网络 机器学习 职位(财务) 软计算 计算机视觉 财务 经济
作者
Qing Bai,Zhanquan Sun,Kang Wang,Chaoli Wang,Shuqun Cheng,Jiawei Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:253: 124336-124336
标识
DOI:10.1016/j.eswa.2024.124336
摘要

In recent years, significant achievements have been made in the field of histopathological image analysis using convolutional neural networks (CNNs). However, existing CNNs fail to fully capture the important local structures and regional information in histopathological images due to the complex tissue structures and variable pathological features present in these images. They often treat all regions equally, which further exacerbates the challenge of accurately analyzing such images. Current network model can't extract deep layer features efficiently without guiding. To alleviate this problem, we propose a novel network model called Multi-Position Supervised Soft Attention (MPSA). MPSA adds regions of interest (RoI) labels at multiple feature layers for deep supervision, and then uses the supervised layers as soft attention to guide the learning of the classification network, enabling the network to accurately extract features of the lesion target. Additionally, we design a Multi-level Attention Feature Enhancement Module (MAFEM), which combines multiple levels of attention mechanisms to enhance the performance of the convolutional neural network in histopathological image classification. MAFEM includes spatial attention, soft attention of the main branch, and our proposed soft attention for multi-branch feature fusion. The proposed soft attention for multi-branch feature fusion aims to enhance the predictive performance of the classification model by activating relevant neurons in the diagnostic area in a highly activated state, while effectively avoiding noise activation. This innovative approach ensures that the model can focus on the most pertinent information, leading to improved classification accuracy. We conducted classification experiments on the liver cancer histopathological images dataset and the results showed that our method achieved a classification accuracy of 95.79%, indicating that it is very effective in the analysis of liver histopathological images. Our proposed network architecture has also demonstrated good generalization ability in other medical datasets, achieving a classification accuracy of 84.41% on the ultrasound carotid plaque dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助小牛采纳,获得10
1秒前
唐糖完成签到,获得积分10
3秒前
矜天完成签到 ,获得积分10
6秒前
无花果应助南门街口的猫采纳,获得10
8秒前
Ashui完成签到,获得积分10
12秒前
Owen应助青岚采纳,获得10
12秒前
13秒前
14秒前
14秒前
17秒前
dh完成签到,获得积分10
22秒前
科研通AI5应助caicainuegou采纳,获得10
24秒前
25秒前
ling完成签到,获得积分20
26秒前
29秒前
30秒前
xmqaq完成签到,获得积分10
31秒前
孙佳仪发布了新的文献求助10
31秒前
33秒前
little佳完成签到 ,获得积分10
33秒前
开心之王完成签到,获得积分10
36秒前
wll1091完成签到 ,获得积分10
38秒前
39秒前
魁梧的海白完成签到,获得积分10
42秒前
闪闪尔白完成签到,获得积分10
42秒前
44秒前
开开心心的开心完成签到,获得积分10
46秒前
共享精神应助科研通管家采纳,获得10
47秒前
47秒前
传奇3应助科研通管家采纳,获得10
47秒前
47秒前
香蕉觅云应助科研通管家采纳,获得10
47秒前
领导范儿应助科研通管家采纳,获得10
47秒前
打打应助科研通管家采纳,获得30
47秒前
48秒前
完美世界应助科研通管家采纳,获得10
48秒前
48秒前
48秒前
斯文败类应助科研通管家采纳,获得10
48秒前
李善聪发布了新的文献求助10
49秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824330
求助须知:如何正确求助?哪些是违规求助? 3366644
关于积分的说明 10441843
捐赠科研通 3085924
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816411
科研通“疑难数据库(出版商)”最低求助积分说明 769640