亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning modeling and prognostic value analysis of invasion-related genes in cutaneous melanoma

弗雷明翰风险评分 基因签名 转录组 比例危险模型 肿瘤科 计算生物学 医学 基因 生物 生物信息学 机器学习 疾病 内科学 基因表达 计算机科学 遗传学
作者
Enyu Yang,Qianyun Ding,Xiaowei Fan,Haihan Ye,Cheng Xuan,Shuo Zhao,Qing Ji,Weihua Yu,Yongfu Liu,Jun Cao,Meiyu Fang,Xianfeng Ding
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:162: 107089-107089 被引量:11
标识
DOI:10.1016/j.compbiomed.2023.107089
摘要

In this study, we aimed to develop an invasion-related risk signature and prognostic model for personalized treatment and prognosis prediction in skin cutaneous melanoma (SKCM), as invasion plays a crucial role in this disease. We identified 124 differentially expressed invasion-associated genes (DE-IAGs) and selected 20 prognostic genes (TTYH3, NME1, ORC1, PLK1, MYO10, SPINT1, NUPR1, SERPINE2, HLA-DQB2, METTL7B, TIMP1, NOX4, DBI, ARL15, APOBEC3G, ARRB2, DRAM1, RNF213, C14orf28, and CPEB3) using Cox and LASSO regression to establish a risk score. Gene expression was validated through single-cell sequencing, protein expression, and transcriptome analysis. Negative correlations were discovered between risk score, immune score, and stromal score using ESTIMATE and CIBERSORT algorithms. High- and low-risk groups exhibited significant differences in immune cell infiltration and checkpoint molecule expression. The 20 prognostic genes effectively differentiated between SKCM and normal samples (AUCs >0.7). We identified 234 drugs targeting 6 genes from the DGIdb database. Our study provides potential biomarkers and a risk signature for personalized treatment and prognosis prediction in SKCM patients. We developed a nomogram and machine-learning prognostic model to predict 1-, 3-, and 5-year overall survival (OS) using risk signature and clinical factors. The best model, Extra Trees Classifier (AUC = 0.88), was derived from pycaret's comparison of 15 classifiers. The pipeline and app are accessible at https://github.com/EnyuY/IAGs-in-SKCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
ccc完成签到 ,获得积分10
5秒前
xxx完成签到,获得积分20
6秒前
10秒前
lucky完成签到 ,获得积分10
10秒前
10秒前
xxx发布了新的文献求助10
11秒前
12秒前
ray发布了新的文献求助10
13秒前
Milton_z完成签到 ,获得积分0
14秒前
22秒前
23秒前
23秒前
李爱国应助春和景明采纳,获得10
25秒前
Fletcherschwann完成签到,获得积分10
31秒前
32秒前
37秒前
38秒前
41秒前
43秒前
tan发布了新的文献求助10
43秒前
45秒前
清脆元冬发布了新的文献求助10
46秒前
FashionBoy应助闫恒采纳,获得10
46秒前
明理夏波完成签到,获得积分10
48秒前
53秒前
56秒前
明理夏波发布了新的文献求助10
58秒前
1分钟前
风趣雅青发布了新的文献求助30
1分钟前
酷波er应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Jasper应助香菜芋头采纳,获得10
1分钟前
LuoLuo完成签到,获得积分10
1分钟前
张匀继完成签到,获得积分10
1分钟前
1分钟前
丘比特应助西内!卡Q因采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194849
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447015
邀请新用户注册赠送积分活动 1438318
关于科研通互助平台的介绍 1415157