UIU-Net: U-Net in U-Net for Infrared Small Object Detection

计算机科学 人工智能 网(多面体) 计算机视觉 数学 几何学
作者
Xin Wu,Danfeng Hong,Jocelyn Chanussot
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 364-376 被引量:369
标识
DOI:10.1109/tip.2022.3228497
摘要

Learning-based infrared small object detection methods currently rely heavily on the classification backbone network. This tends to result in tiny object loss and feature distinguishability limitations as the network depth increases. Furthermore, small objects in infrared images are frequently emerged bright and dark, posing severe demands for obtaining precise object contrast information. For this reason, we in this paper propose a simple and effective "U-Net in U-Net" framework, UIU-Net for short, and detect small objects in infrared images. As the name suggests, UIU-Net embeds a tiny U-Net into a larger U-Net backbone, enabling the multi-level and multi-scale representation learning of objects. Moreover, UIU-Net can be trained from scratch, and the learned features can enhance global and local contrast information effectively. More specifically, the UIU-Net model is divided into two modules: the resolution-maintenance deep supervision (RM-DS) module and the interactive-cross attention (IC-A) module. RM-DS integrates Residual U-blocks into a deep supervision network to generate deep multi-scale resolution-maintenance features while learning global context information. Further, IC-A encodes the local context information between the low-level details and high-level semantic features. Extensive experiments conducted on two infrared single-frame image datasets, i.e., SIRST and Synthetic datasets, show the effectiveness and superiority of the proposed UIU-Net in comparison with several state-of-the-art infrared small object detection methods. The proposed UIU-Net also produces powerful generalization performance for video sequence infrared small object datasets, e.g., ATR ground/air video sequence dataset. The codes of this work are available openly at https://github.com/danfenghong/IEEE_TIP_UIU-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BOLIN完成签到,获得积分10
1秒前
1秒前
4秒前
ZBQ完成签到,获得积分10
5秒前
小天使的使完成签到,获得积分10
8秒前
苗条的酸奶完成签到,获得积分10
9秒前
丘比特应助积极的板栗采纳,获得10
9秒前
英俊的铭应助积极的板栗采纳,获得10
9秒前
李健应助积极的板栗采纳,获得10
9秒前
Jasper应助TRY采纳,获得10
10秒前
烟花应助TRY采纳,获得10
10秒前
小二郎应助TRY采纳,获得10
10秒前
SciGPT应助TRY采纳,获得10
10秒前
Lucas应助TRY采纳,获得10
10秒前
orixero应助TRY采纳,获得10
10秒前
大模型应助TRY采纳,获得10
10秒前
我一拳打树上完成签到,获得积分10
10秒前
泡泡发布了新的文献求助10
10秒前
怡然雁凡完成签到,获得积分10
13秒前
18秒前
Victor完成签到,获得积分10
20秒前
积极的板栗完成签到,获得积分10
20秒前
大溺完成签到 ,获得积分10
20秒前
Owen应助yiliu采纳,获得10
21秒前
王敏完成签到 ,获得积分10
22秒前
23秒前
Ava应助许诺采纳,获得10
25秒前
31秒前
33秒前
TRY完成签到,获得积分10
33秒前
piaopiao2021完成签到,获得积分20
34秒前
巨炮叔叔完成签到,获得积分10
34秒前
七七完成签到,获得积分10
35秒前
wickedzz完成签到,获得积分10
35秒前
yiliu发布了新的文献求助10
36秒前
BY完成签到,获得积分10
36秒前
轶Y发布了新的文献求助10
37秒前
focco完成签到,获得积分10
38秒前
39秒前
小虎同学完成签到,获得积分10
41秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Electrolytes, Interfaces and Interphases: Fundamentals and Applications in Batteries 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825630
求助须知:如何正确求助?哪些是违规求助? 3367812
关于积分的说明 10447822
捐赠科研通 3087227
什么是DOI,文献DOI怎么找? 1698538
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973