Spatial modeling of geogenic indoor radon distribution in Chungcheongnam-do, South Korea using enhanced machine learning algorithms

均方误差 算法 分组数据处理方法 统计 数学 机器学习 计算机科学 量子力学 物理
作者
Fatemeh Rezaie,Mahdi Panahi,Sayed M. Bateni,Seonhong Kim,Jongchun Lee,Jungsub Lee,Juhee Yoo,Hyesu Kim,Sung Won Kim,Saro Lee
出处
期刊:Environment International [Elsevier]
卷期号:171: 107724-107724 被引量:23
标识
DOI:10.1016/j.envint.2022.107724
摘要

Prolonged inhalation of indoor radon and its progenies lead to severe health problems for housing occupants; therefore, housing developments in radon-prone areas are of great concern to local municipalities. Areas with high potential for radon exposure must be identified to implement cost-effective radon mitigation plans successfully or to prevent the construction of unsafe buildings. In this study, an indoor radon potential map of Chungcheongnam-do, South Korea, was generated using a group method of data handling (GMDH) algorithm based on local soil properties, geogenic, geochemical, as well as topographic factors. To optimally tune the hyper-parameters of GMDH and enhance the prediction accuracy of modelling radon distribution, the GMDH model was integrated with two metaheuristic optimization algorithms, namely the bat (BA) and cuckoo optimization (COA) algorithms. The goodness-of-fit and predictive performance of the models was quantified using the area under the receiver operating characteristic (ROC) curve (AUC), mean squared error (MSE), root mean square error (RMSE), and standard deviation (StD). The results indicated that the GMDH-COA model outperformed the other models in the training (AUC = 0.852, MSE = 0.058, RMSE = 0.242, StD = 0.242) and testing (AUC = 0.844, MSE = 0.060, RMSE = 0.246, StD = 0.0242) phases. Additionally, using metaheuristic optimization algorithms improved the predictive ability of the GMDH. The GMDH-COA model showed that approximately 7 % of the total area of Chungcheongnam-do consists of very high radon-prone areas. The information gain ratio method was used to assess the predictive ability of considered factors. As expected, soil properties and local geology significantly affected the spatial distribution of radon potential levels. The radon potential map produced in this study represents the first stage of identifying areas where large proportions of residential buildings are expected to experience significant radon levels due to high concentrations of natural radioisotopes in rocks and derived soils beneath building foundations. The generated map assists local authorities to develop urban plans more wisely towards region with less radon concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nns完成签到,获得积分10
刚刚
1秒前
无限师完成签到,获得积分10
1秒前
東東发布了新的文献求助10
1秒前
烂漫的新竹发布了新的文献求助100
1秒前
一坤发布了新的文献求助10
2秒前
小二郎应助ysxl采纳,获得10
2秒前
cz完成签到 ,获得积分10
2秒前
太阳雨完成签到,获得积分10
2秒前
甜橙岛完成签到,获得积分10
2秒前
传奇3应助儒雅的巧曼采纳,获得10
2秒前
小瞬完成签到,获得积分10
2秒前
噜噜噜完成签到,获得积分10
2秒前
石问丝发布了新的文献求助10
2秒前
wbscz完成签到 ,获得积分10
3秒前
3秒前
拂晓发布了新的文献求助10
4秒前
街上的狗完成签到,获得积分0
4秒前
太阳雨发布了新的文献求助10
5秒前
小杭76发布了新的文献求助10
5秒前
梁巧惠发布了新的文献求助10
5秒前
5秒前
sprileye完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
7秒前
7秒前
星辰大海应助粥粥采纳,获得30
7秒前
7秒前
7秒前
lllxxx完成签到,获得积分10
7秒前
7秒前
所所应助jiangnan采纳,获得10
7秒前
8秒前
sunny完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Jasper应助XiaoYuuu采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066