ARBiS: A Hardware-Efficient SRAM CIM CNN Accelerator With Cyclic-Shift Weight Duplication and Parasitic-Capacitance Charge Sharing for AI Edge Application

计算机科学 卷积神经网络 计算机硬件 静态随机存取存储器 硬件加速 边缘设备 内存计算 并行计算 半导体存储器 内存管理 交错存储器 现场可编程门阵列 云计算 人工智能 操作系统
作者
Chenyang Zhao,Jinbei Fang,Jingwen Jiang,Xiaoyong Xue,Xiaoyang Zeng
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 364-377 被引量:15
标识
DOI:10.1109/tcsi.2022.3215535
摘要

Computing-in-memory (CIM) relieves the Von Neumann bottleneck by storing the weights of neural networks in memory arrays. However, two challenges still exist, hindering the efficient acceleration of convolutional neural networks (CNN) in artificial intelligence (AI) edge devices. Firstly, the activations for sliding window (SW) operations in CNN still bring high memory access pressure. This can be alleviated by increasing the SW parallelism, but simple array replication suffers from poor array utilization and large peripheral circuits overhead. Secondly, the partial sums from individual CIM arrays, which are usually accumulated to obtain the final sum, introduce large latency due to enormous shift-and-add operations. Moreover, high-resolution ADCs are also needed to reduce the quantization error of partial sums, further increasing the hardware costs. In this paper, a hardware-efficient CIM accelerator, ARBiS, is proposed with improved activation reusability and bit-scalable matrix-vector-multiplication (MVM) for CNN acceleration in AI edge applications. The cyclic-shift weight duplication exploits a third dimension of receptive field (RF) depth for SW weight mapping to reduce the memory accesses of activations, improving the array utilization. The parasitic-capacitance charge sharing is employed to realize high-precision analog MVM in order to reduce the ADC cost. Compared with conventional architectures, ARBiS with parallel processing of 9 SW operations achieves 56.6%~58.8% alleviation of memory access pressure. Meanwhile, ARBiS configured with 8-bit ADCs saves 92.53%~94.53% ADC energy consumption. An ARBiS accelerator is evaluated to realize a computational efficiency (CE) of 10.28 (10.43) TOPS/mm2, an energy efficiency (EE) of 91.19 (112.36) TOPS/W with 8-bit (4-bit) ADCs, achieving $11.4\sim 11.7\times $ ( $11.6\sim 11.8\times $ ), $1.1\sim 3.3\times $ ( $1.4\sim 4\times $ ) improvements over state-of-the-art works, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
猫猫侠完成签到 ,获得积分10
2秒前
xxx发布了新的文献求助10
2秒前
hhhhzzzz发布了新的文献求助10
2秒前
隐形曼青应助大力的山兰采纳,获得10
2秒前
月光完成签到 ,获得积分10
3秒前
D77完成签到,获得积分20
3秒前
李健的小迷弟应助贺雨曦采纳,获得10
3秒前
老实火完成签到,获得积分10
4秒前
yunpeng发布了新的文献求助10
4秒前
4秒前
li完成签到 ,获得积分10
5秒前
哈利波波1021完成签到,获得积分10
5秒前
5秒前
yyds完成签到,获得积分10
5秒前
5秒前
CY88完成签到,获得积分10
6秒前
6秒前
SciGPT应助久晴采纳,获得10
6秒前
jun发布了新的文献求助10
6秒前
科研通AI6应助li采纳,获得10
6秒前
冷傲老头发布了新的文献求助10
7秒前
yz完成签到,获得积分10
7秒前
7秒前
Trip_wyb发布了新的文献求助10
7秒前
嘻嘻不嘻嘻完成签到 ,获得积分10
8秒前
卷卷发布了新的文献求助10
8秒前
feihua1完成签到 ,获得积分10
9秒前
文献小松鼠完成签到,获得积分10
9秒前
CY88发布了新的文献求助10
9秒前
Z丶发布了新的文献求助10
9秒前
D77发布了新的文献求助10
9秒前
JamesPei应助woaihaohao采纳,获得10
10秒前
剁椒鱼头完成签到 ,获得积分10
10秒前
10秒前
10秒前
丰富的乐瑶完成签到 ,获得积分10
10秒前
ghx完成签到 ,获得积分10
10秒前
lebron发布了新的文献求助100
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621155
求助须知:如何正确求助?哪些是违规求助? 4705820
关于积分的说明 14933673
捐赠科研通 4764606
什么是DOI,文献DOI怎么找? 2551460
邀请新用户注册赠送积分活动 1513997
关于科研通互助平台的介绍 1474746