零价铁
过硫酸盐
降级(电信)
催化作用
吸附
苯酚
化学工程
化学
有机化学
计算机科学
工程类
电信
作者
Bo Cao,Jianhua Qu,W. H. Bian,Qiqi Hu,Xinyan Fu,Guangshan Zhang,Yuezhi Zhang,Tao Yue,Zhao Jiang,Ying Zhang
标识
DOI:10.1016/j.jclepro.2024.141221
摘要
Persulfate (PS) activation by nano zerovalent iron (nZVI) is promising for water purification, which is restricted due to its easy agglomeration and oxidation. Herein, porous hydrochar loaded nZVI (nZVI@PHC) was successfully synthesized by one-step process. nZVI@PHC not only had excellent adsorption capacity (178.6 mg/g) and abundant functional groups, but also possessed highly dispersed nZVI for PS activation to produce reactive oxygen species. Impressively, 0.2 g/L of nZVI@PHC (PHC/nZVI = 5:3) and 0.4 g/L of PS could achieve 99.7 % of phenol removal within 10 min. Moreover, nZVI@PHC/PS system showed superior applicability among wide range of initial pH (3.0–9.0) and temperatures (25–55 °C). Phenol removal mechanisms were elaborated by dissolved iron ions, scavenging experiments, and electronic paramagnetic spectrometer. As a result, both non-free radical pathway mediated by O21 and free radical pathway (SO4•−, HO•, and O2•−) participated in phenol degradation. Additionally, nZVI@PHC/PS system had favorable reusability and high tolerance to co-existing substance and different water bodies. This study provides a promising strategy to tailor highly active nZVI for PS activation to organic contaminants degradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI