Particle guided metaheuristic algorithm for global optimization and feature selection problems

元启发式 特征选择 计算机科学 并行元启发式 特征(语言学) 数学优化 选择(遗传算法) 粒子群优化 算法 多群优化 全局优化 人工智能 元优化 数学 语言学 哲学
作者
Benjamin Danso Kwakye,Yongjun Li,Halima Habuba Mohamed,Evans Baidoo,Theophilus Quachie Asenso
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123362-123362 被引量:38
标识
DOI:10.1016/j.eswa.2024.123362
摘要

Optimization problems can be seen in numerous fields of practical studies. One area making waves in the application of optimization methods is data mining in machine learning. An important preprocessing technique of data mining where irrelevant variables are discarded from the datasets and holding onto variables with important information is referred to as feature selection (FS). FS is critical to tackling the ‘curse of dimensionality’ by reducing the number of features, minimizing computational expensiveness and maximizing the accuracy of the machine learning models. Swarm Intelligence (SI)-based meta-heuristic algorithms (MAs) have been widely employed to solve several optimization problems like FS. However, common drawbacks identified with these algorithms include getting trapped in local optima, especially in situations where the search space is large (high dimensional space). This study proposes a new hybrid SI-based MA called Particle Swarm-guided Bald Eagle Search (PS-BES). The algorithm utilizes the speed of Particle Swarm to guide Bald Eagles in their search to ensure a smooth transition of the algorithm from exploration to exploitation. Additionally, we introduce the Attack-Retreat-Surrender technique, a new local-optima escape technique to enhance the balance between diversification and intensification of PS-BES. To establish the outstanding performance of the proposed algorithm, PS-BES is comprehensively analyzed utilizing 26 Benchmark functions. Further, the practicality of PS-BES is highlighted by its binary version for feature selection and evaluated using 27 classification datasets from the UCI repository. The results prove the overall superiority of PS-BES and bPS-BES as opposed the 10 state-of-the-art algorithms employed in the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
慕青应助阳光的小白菜采纳,获得10
1秒前
1秒前
zhh完成签到,获得积分10
2秒前
小二郎应助不安夜雪采纳,获得10
2秒前
阿清完成签到 ,获得积分10
3秒前
南瓜气气完成签到,获得积分10
3秒前
3秒前
Jeremy637完成签到 ,获得积分10
4秒前
BioRick发布了新的文献求助10
4秒前
相信相信的力量完成签到,获得积分10
6秒前
学术混子完成签到,获得积分10
6秒前
研友_24789完成签到,获得积分10
6秒前
逆境完成签到,获得积分10
7秒前
7秒前
枼leon发布了新的文献求助30
7秒前
dddd完成签到,获得积分10
7秒前
7秒前
英姑应助忧子忘采纳,获得10
7秒前
科研通AI2S应助依依采纳,获得10
8秒前
科研通AI5应助诚心小兔子采纳,获得30
8秒前
BioRick完成签到,获得积分10
8秒前
xyyyy完成签到 ,获得积分10
8秒前
gww完成签到,获得积分10
8秒前
优美银耳汤完成签到 ,获得积分10
9秒前
9秒前
10秒前
谦让谷槐完成签到,获得积分10
10秒前
11秒前
11秒前
SilentStorm完成签到,获得积分10
12秒前
12秒前
猎空发布了新的文献求助10
12秒前
13秒前
13秒前
Sledge完成签到,获得积分10
13秒前
细心的日记本完成签到,获得积分20
14秒前
科研通AI2S应助大鱼采纳,获得10
14秒前
不安夜雪发布了新的文献求助10
14秒前
可爱的小桃完成签到,获得积分10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834177
求助须知:如何正确求助?哪些是违规求助? 3376774
关于积分的说明 10494951
捐赠科研通 3096188
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820249
科研通“疑难数据库(出版商)”最低求助积分说明 771915